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Preface

Building software often seems harder than it ought to be. It takes longer
than expected, the software’s functionality and performance are not as
wonderful as hoped, and the softwareis not particularly mal leable or easy
to maintain. It does not have to be that way.

Thisbook isabout programming, and the role that formal specifications
can play in making programming easier and programs better. Theintended
audienceis practicing programmers and studentsin undergraduate or basic
graduate courses in software engineering or forma methods. To make
the book accessible to such an audience, we have not presumed that the
reader has formal training in mathematics or computer science. We have,
however, presumed some programming experience.

Theroles of formal specifications

Designing software is largely a matter of combining, inventing, and
planning the implementation of abstractions. The goal of design is to
describe a set of modules that interact with one another in simple, well-
defined ways. If thisisachieved, peoplewill be ableto work independently
on different modules, and yet the modules will fit together to accomplish
the larger purpose. In addition, during program maintenance it will be
possible to modify a module without affecting many others.

Abstractions are intangible. But they must somehow be captured and
communicated. That is what specifications are for. Specification gives
us a way to say what an abstraction is, independent of any of its
implementations.

The specifications in this book are written in formal specification
languages. We use formal languages because we know of no other way to
make specifications simultaneously as precise, clear, and concise. Anyone
who has attempted to write documentation for asubroutinelibrary, drafted
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Vi Preface

contracts, or studied thetax code, knows how difficult it isto achieve even
precision in anatural language—Ilet aone clarity and brevity.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to help detect and isolate many of these mistakes.

Some programmers are intimidated by the mere idea of formal
specifications, which they fear may be too “mathematical” for them to
understand and use. Such fears are groundless. Anyone who can learn
to use a programming language can learn to use a formal specification
language. After al, programs themselves are formal texts. Programmers
cannot escape from formality and mathematical precision, even if they
want to.

Overview of the book

Chapter 1 discusses the use of formal specificationsin program develop-
ment, providing acontext for thetechnical material that follows. Chapter 2
contains a very short introduction to the notation of mathematical logic.
The chapter is aimed at those with no background in logic, and provides
all thelogic background needed to understand the remainder of the book.

The rest of the book is an in-depth look at Larch, our approach to the
formal specification of program components.

Chapter 3 gives an overview of the Larch two-tiered approach to
specification. Each Larch specification has components written in two
languages. one that is designed for a specific programming language
(a Larch interface language) and another that is independent of any
programming language (LSL, the Larch Shared Language). It also
introduces LP, atool used to reason about specifications. The descriptions
are dl brief; details are reserved for later chapters.

The remaining chapters are relatively independent, and can be read in
any order. Chapter 4 isatutorial on LSL. It isnot areference manual, but it
doescover al features of thelanguage. Chapter 5isanintroductiontoLCL,
aLarch interface language for Standard C. It describes the basic structure
and semanticsof thelanguage, and it presents an extended example—al ong
with hints about how to use LCL to support a style of C programming that
emphasizes abstraction. Chapter 6 is an introduction to LM3, a Larch
interface language for Modula-3. Chapter 7 discusses how LP can be used
to analyze and help debug specifications written in LSL. It contains a
short review of LP's major features, but is not comprehensive. Chapter 8
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presents a brief summary of what we believe to be the essence of Larch.

The book concludes with several appendices. Appendix A contains a
handbook of LSL specifications. Appendix B contains C implementations
of the abstractions specified in Chapter 5. Appendix C dealswith Larch’'s
customization of lexical conventions. Appendix D contains a bibliography
on Larch, and tells how to get more information about Larch, including
how to get some of the Larch tools.

Some history

This book has been a long time in the growing. The seed was planted
by Steve Zilles on October 3, 1973. During a programming language
workshop organized by Barbara Liskov, he presented three simple
equations relating operations on sets, and argued that anything that could
reasonably be called aset would satisfy these axioms, and that anything that
satisfied these axioms could reasonably be called a set. We devel oped this
idea, and showed that all computable functions over an abstract type could
be defined a gebraically using equations of asimpleform, and considered
the question of when such a specification constituted an adequate definition
[40].

As early as 1974, we redized that a purely algebraic approach to
specification was unlikely to be practical. At that time, we proposed a
combination of algebraic and operationa specifications which we referred
to as “dyadic specification” [39].

By 1980 we had evolved the essence of the two-tiered style of
specification used in this book [43], athough that term was not introduced
until 1983 [86]. An early version of the Larch Shared Language was
described in 1983 [44]. The first reasonably comprehensive description
of Larch was published in 1985 [50]. Many readers complained that the
contemporaneous Larch in Five Easy Pieces[51] should have been called
Larch in Five Pieces of Varying Difficulty. They were not wrong.

By 1990 some software tools supporting Larch were available, and
we began using them to check and reason about specifications. There
is now a substantial and growing collection of support tools. We used
them extensively in preparing this book. All of the forma proofs
presented have been checked using LP. With the exception of parts of the
LM3 specifications, al specifications have been subjected to mechanical
checking. This process did not guarantee that the specifications accurately
capture our intent; it did serve to help usfind and eliminate severa errors.
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In the spring of 1990, we decided that it was time to make information
on Larch more widely available. We originally thought of an anthology.
The editors we contacted encouraged us to prepare a book, but urged us
to provide a more coherent and integrated presentation of the material. We
decided to take their advice. Had our families known how much of our
time this would take, they would surely have tried to talk us out of it. In
any event, we apologizeto Andrea, David, Jane, Mark, Michael, and Olga
for all the attention that “ The Book” stole from them.
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Chapter 1

Specificationsin Program
Development

This book is about formal specification of programs and components of
programs. Weareinterested i n using specificationsto helpintheproduction
and maintenance of high quality software.

We begin this chapter with a few remarks about programming and the
role of abstraction. We then move on to discuss how specifications fit into
the picture.

1.1 Programming with abstractions

Building a software system is amost entirely a design activity. Unfor-
tunately, software is usualy designed badly or barely designed at all. A
symptom of negligence during design is the number of software projects
that are seriously behind schedule, despite having had design phases that
were*completed” right on schedule[10]. In practice, designisthe phase of
a software project that is declared “complete’” when circumstances require
it. Part of the problem isthat there are few objective criteriafor evaluating
the quality and completeness of designs. Another part is the elapsed time
between producing adesign and getting feedback from theimplementation
Process.

This book describes how formal specifications can be used effectively
to structure and control the design process and to document the results.

The key to structuring and controlling the design process is, as
Machiavelli said, “Divide et impera.” Regrettably, he was not clear about
how to apply this stratagem to software devel opment.

Two primary tools for dividing a problem are decomposition and
abstraction. A good decomposition factors a problem into subproblems
that:

e areadll at the same level of detail,
¢ can be solved independently, and

¢ have solutionsthat can be combined to solve the original problem.
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2 1.1. Programming with abstractions

int sgrt(int x) {
requires x > 0;
nodi fi es not hi ng;
ensures V i: int
( abs(x - (result*result)) < abs(x - (i*i)) );

FIGURE 1.1. A specification of an integer square Root procedure

The last criterion is the hardest to satisfy. This is where abstraction
comes in. Abstraction involves ignoring details that are irrelevant for
some purpose. It facilitates decomposition by making it possible to focus
temporarily on simpler problems.

Consider, for example, the problem of designing a program to compile
a source language, say Modula-3, to atarget language, say Alphamachine
code. Much of the compiler can be designed without paying attention to
many of the detail sof either Modul a-3 or the Alphaarchitecture. Onemight
well begin by abstracting to the problem of compiling a source language
with a deterministic context-free grammar to areduced instruction (RISC)
set target language. One might then choose to model the compiler’s design
on the design of other compilers that solve the same abstract problem,
e.g., to decompose the problem into the separate problems of writing a
scanner, a parser, a static semantic checker, and several code generation
and optimization phases.

This paradigm of abstracting and then decomposing is typical of the
program design process. Two important abstraction mechani sms are used:
abstraction by parameterization and abstraction by specification.

Abstraction by parameterization allows a single program text to
represent a potentialy infinite set of computations or types. For example,
the C code

int twce(int x) {return x + x;}

denotes a procedure that can be used to double any integer.

Abstraction by specification allowsasingletext to represent apotentially
infinite set of programs. For example, the specification in Figure 1.1
describes any procedure that, given an appropriate argument, computes
an integer approximation to its square root. Notice that it specifies the
required result, not any particular algorithm for achieving it. Notice also
that it does not describe the result completely. For example, it does not
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1. Specificationsin Program Development 3

constrain the result to be positive.

For the most part, software design is the process of inventing and
combining abstractions and planning their implementation.

There are severa reasons why it is better to think about combining
abstractions than to think about combining their implementations:

e Abstractions are easier to understand than implementations, so
combining abstractionsis less work.

¢ Relying only on properties of the abstractions makes software easier
to maintain, because it is clear what properties must be preserved
when an implementation is changed.

e Because an abstraction can have several implementations with
different performance properties, it can be used in various contexts
with different performance requirements. Any implementation can
be replaced by another during performance tuning without affecting
correctness.

The key to good software design is inventing appropriate abstractions
around which to structure the software. Bad programmers typically don’t
even try to invent abstractions. M ediocre programmersinvent abstractions
sufficient to solve the current problem. Great programmers i nvent el egant
abstractions that get used again and again.

1.2 Finding abstractions

Structure is sometimes identified with hierarchy; hierarchical decomposi-
tion is sometimes preached asthe only “structured” programming method.
The problem with hierarchical decompositionisthat, asthe hierarchy gets
deeper, it leads to highly specialized components that assume a great deal
of context. This decreases the likelihood that components will be useful
elsewhere—either in the current system or in software that i s built later. A
relatively flat structure usually encourages more reuse.

Important boundaries in the software should correspond to stable
boundaries in the problem domain. Such correspondence makes it more
likely that when customersask for asmall change in the observed behavior
of the software, the change can be accomplished by a small change to
the implementation. Stable boundaries in the problem domain frequently
involve data types, rather than individual operations, because the kinds of
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4 1.2. Finding abstractions

objects that 1ong-lived software manipulates tend to change more slowly
than the operations performed on those objects. This leads to a style of
programming in which data abstraction plays a prominent rol e.

A data type (data abstraction) is best thought of as a collection of
related operations that manipulate a collection of related values [68]. For
example, one should think of thetypei nt eger asproviding operations,
such as 0 and +, rather than as an array of 32 (or perhaps 64) bits, whose
high-order bit is interpreted as its sign. Similarly, one should think of the
typebond asacollection of operationssuch asget _coupon_r at e and
get _current _yi el d rather than as arecord containing various fields.

An abstract type is a type that is presented to a client in terms
of its specification, rather than its implementation. To implement an
abstract type, one selects a representation (i.e., a storage structure and
an interpretation that says how values of the type are represented) and
implements the type's operations in terms of that representation. Clients
of an abstract type invoke its operations, rather than directly accessing its
representation. When the representation is changed, programs that use the
type may have to be recompiled, but they needn’t be rewritten.!

Even inlanguages, such as C, that provide no direct support for abstract
types, there is a style of programming in which abstract types play
a prominent role. Programmers rely on conventions to ensure that the
implementation of an abstract type can be changed without affecting the
correctness of software that uses the abstract type. The key restriction is
that programs never directly access the representation of an abstract value.
All access is through the operations (procedures and functions) provided
initsinterface.

1.3 Themany roles of specification

Abstractions are intangible. But they must somehow be captured and
communicated. Specification gives us a way to say what an abstraction
is, independent of any of its implementations. Writing specifications can
serve to clarify and deepen designers’ understanding of whatever they are
specifying, by focusing attention on possibleinconsistencies, lacunae, and
ambiguities.

Once written, specifications are helpful to implementors, testers, and

For amore comprehensive discussion of the role of data abstractionin programming,
see[63].
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maintainers. Specifications provide “logical firewalls’ by documenting
mutual obligations. Implementors are to write software that meets its
specification. Clients, i.e., writers of programs that use the software
interface, areto rely only on properties of the software that are guaranteed
by its specification.

During module testing and quality assurance, specifications provide
information that can be used to generate test data, build stubs, and
analyze information flow. During system integration, specifications reduce
the number and severity of interface problems by reducing the number
of implicit assumptions. Finally, specifications aid in maintenance by
recording the properties that must be preserved and by delimiting the
changes that might affect clients.

All of these virtues can be attributed to the information hiding provided
by specifications. Specification makes it possible to completely hide the
implementation of an abstraction from its clients, and to completely hide
the uses made by clients from the implementor [70].

1.4 Stylesof specification

A good specification should be tight enough to rule out implementations
that are not acceptable. It should aso be loose enough to allow the most
desirable (i.e, efficient and elegant) implementations. A specification that
fails to rule out undesired “solutions’ is not sufficiently constraining;
one that places unnecessary constraints on implementations is guilty of
implementation bias.

A definitional specification explicitly lists properties that implemen-
tations must exhibit. The specification in Figure 1.1 is definitional. An
operational specification gives one recipe that has the required properties,
instead of describing them directly. Figure 1.2 contains an operational
specification of a square root procedure. It looks suspicioudly like a
program—it defines a function by showing how to compute it. In fact,
every program can be viewed as a specification. The converseis not true:
many specifications are not programs. Programs have to be executable,
but specifications don’t. This freedom can often be exploited to make
specifications simpler and clearer.

There are strong arguments in favor of both the operational and
definitional stylesof specification. Thestrength of operational specification
liesin its similarity to programming. This reduces the time required for
programmersto learn to use specifications. Someoperational specifications
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6 1.4. Styles of specification

int sgrt(int x)
requires x > 0

effects

i :O;

while i*i < x
i =i + 1 end

if abs(i*i - x) > abs((i - 1) * (i - 1) - x)
then returni - 1

el se return i

FIGURE 1.2. An Operational Specification of Integer Square Root

are directly executable. By executing specifications as “rapid prototypes,”
specifiersandtheir clientscan get quick feedback about the software system
being specified.

On the other hand, definitional specifications are not bound by the
constraint of constructivity. They are often shorter and clearer than
operationa specifications. They are aso easier to modularize, because
properties can be stated separately and then combined. Because definitional
specifications are so different from programs, they provide a distinct
viewpoint on systemsthat is frequently helpful.

It is often difficult to determine from an operational specification which
properties are necessary parts of the thing being specified and which are
unimportant. The specification in Figure 1.2, for example, allows fewer
implementationsthan the specificationin Figure 1.1. Animplementationis
certainly not obligedto usethesimple, but horribly inefficient, specification
algorithm, but it must compute the same result, and therefore must not
return a negative number. This constraint might be essential in some
contexts and insignificant in others. Figure 1.2 does not say, and cannot
easily be modified to say, whether the sign of theresult matters. Figure 1.1,
on the other hand, can easily be strengthened to specify the sign if that is
important.

1.5 Formal specifications

The specifications in this book are written in forma specification
languages. A formal specification language provides:
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e a syntactic domain—the notation in which the specifications are
written,

¢ asemantic domain—auniverse of thingsthat may be specified, and

e asatisfaction relation saying which things in the semantic domain
satisfy (implement) which specifications in the syntactic domain.

We use formal languages because it seemsto be the easiest way to write
specifications that are simultaneously precise, clear, and concise. Thisis
hardly surprising. It isno accident that such diverse activitiesas chemistry,
chess, knitting, and music all have their own formal notations.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to hel p detect and i solate many of these mistakes. Anyonewho has
used a strongly typed programming language knows that even something
assimpleasasyntax and type checker isinva uable. Comparable checking
and diagnosis of formal specificationsis easy and worthwhile, but we can
do even better. Various kinds of formal specifications can be checked more
thoroughly by tool sthat hel p explore the consequences of design decisions,
detect logical inconsistencies, simulate execution, execute symbolically,
prove the correctness of implementation steps (refinements), etc.

Are formal specifications too “mathematica” to be used by typical
programmers? No. Anyone who can learn to read and write programs can
learn to read and write formal specifications. After al, each programming
language is aformal language.
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Chapter 2
A Little Bit of Logic

Thischapter contains all the logic one needs to know to understand Larch.

The mathematical formalism underlying the Larch family of languages
is multisorted first-order logic with equality. We use a few notations and
basic concepts from this logic quite freely in the rest of the book. If you
are aready familiar with logic, you should scan this chapter quickly to
see which of the many “standard” logical notations we have adopted. If
you have no acquaintance with logic, don’t worry. Thisis a brief chapter,
and the parts of logic that we present are really quite ssmple—amost as
simple as basic arithmetic and much simpler than common programming
languages. If you want afuller treatment of logic, you should consult one
of the many textbooks available, but there is no reason to do so before
continuing in this book.

To help the your intuition, we point out programming analogs of some
of the logica concepts. However, these analogies should not be pushed
too far; logic is not a programming language. We use logic to describe
properties that objects might or might not have (e.g., to describe what it
means to be the shortest path between two pointsin a graph), whereas we
use programming languages to describe how to produce certain objects
(e.g., to describe how to find a shortest path).

2.1 Basiclogical concepts

A logical language consists of a set of sorts and operators (function
symbols). Sorts are much like programming language types. An operator
(eg., +) stands for a map from tuples of values to values; its signature
(eg., Int, I nt—lnt) isatupleof sorts for its arguments (its domain
sorts, eg., I nt, I nt) and a sort for its result (its range sort, e.g., | nt).
A relational operator is a binary operator with range sort Bool (eg.,
<: E, E—~Bool ). Operators are much like identifiers for value-returning
procedures in programming languages.

An application consists of an operator and a tuple of terms, each of
which has the same sort as the corresponding domain sort for the operator.
The sort of an application is the same as that of the operator’s range sort.
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Applications are much like procedure calls in programming | anguages.

An important special caseisan operator whose signature has no domain
sorts. We will write such applications without parentheses (e.g., enpty
rather than enpt y () ). Werefer to both the operator and its application as
aconstant.

The application of an infix operator may be written with the operator
between thetwo operands (e.g., x+y rather than +( x, y) ). For operators
that are associative, such as +, we also alow morethan two operands (e.g.,
x+y+z isequivalentto (x+y) +z andto+(+(x, y), 2z)).

A variable is an identifier standing for an arbitrary value of some
sort. Logical variables are different from programming language variables
because the value of alogical variable does not change over time.

A termisavariable, an application, or a parenthesized term.

An equation is aterm of sort Bool , written as a pair of terms of the
same sort, joined by the the equality operator, =.

A predicate (also called aformula) is aterm of sort Bool . In order to
determine whether a given predicate is true or false, we must know how
to interpret the sorts and operators in the logical language. For example,
sqrt(5) = 2 isfaseifsqrt isinterpreted asthe square-root function
over thereal numbers and the constant operators 5 and 2 areinterpreted as
the real numbersfive and two. Alternatively, the predicate istrueif sqrt
isinterpreted as the greatest-integer-less-than-or-equal -to-the-square-root
function. So it only makes sense to talk about whether a predicate is true
or falseif we are given a structure (interpretation) that assigns

e anonempty set of valuesto each sort, and

e atota function (that maps tuples of values of its domain sorts to
values of its range sort) to each operator.

Most logics come with a set of operators whose meanings are fixed
a priori, for example, the equality operator for each sort. Others are the
propositional connectives <> (if and only if), = (not), A (and), v (or), and
= (implies).

First-order logic provides several ways to form predicates. We describe
these, as well as what it means for each kind of predicate to be true in a
given structure under a given assignment of valuesto its variables.

¢ Asmentioned above, an equation is a predicate consisting of a pair
of terms of the same sort, joined by the equality operator, =. Itistrue
if itstwo operands have the same value in the given structure under
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2.1. Basiclogical concepts

the given assignment of values to variables. The predicate x = y
may be read as “x egquals y.” The propositional connective < has
the same meaning as the equality operator for the sort Bool . The
predicate P < Qmay beread as“P if and only if Q”

A negation is a predicate preceded by the negation operator, —. Itis
true if the operand of - is false. The predicate —-P may be read as
“not P.”

A conjunction is a pair of predicates joined by the conjunction
connective, A. A conjunction is true if both its operands are true.
The predicate P A Qmay be read as*“both P and Q”

A digunction is a pair of predicates joined by the disjunction
connective, v. A digunctionistrueif at least one of its operandsis
true. The predicate P v Qmay be read as “either P or Qor both.”

An implication is a pair of predicates joined by the implication
connective, =-. An implication is true if its left operand is false or
itsright operand is true. Therefore, P = Q has the same meaning
as—-P v Q Thepredicate P = Qmay beread as“P impliesQ’
or “if Pthen Q"

A binding is a predicate preceded by a variable and its sort. All
occurrences of the variable in the predicate are said to be bound
(and to have that sort). The binding is said to have captured the
variable it binds. A variable is free in a predicate if there are any
instances of it anywhere in the predicate that are not bound.

A quantified predicateisabinding preceded by either the existential
quantifier, 3, or theuniversal quantifier, V. Bindingsareonly allowed
immediately following quantifiers. The binding ¥x: S may be read
as“for al x of sort S.”

— A witness for a bound variable is a value that makes the
predicate in its binding true, in a structure under a given
assignment, when the assignment is modified to assign the
witnessto the bound variable.

— An existentially quantified predicate is true if there is at least
one witness for its bound variable. The predicate 3x: S (P)
may be read as “there existsan x of sort S such that P.”
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2. A Little Bit of Logic 11

— A universally quantified predicate istrueif the predicate in its
bindingistruefor all valuesof itsbound variable. The predicate
¥x:S (P) may beread as“for all x of sort S, P.”

If a predicate is truein al structures under all assignments to its free
variables, itissaid to bevalid or atautology. If there existsa structure and
an assignment to its free variables under which it is true, it is said to be
satisfiable.

A sentence is a predicate with no free variables. By convention, we
consider a free-standing predicate with free variables as standing for
the sentence obtained by universally quantifying its free variables at the
outermost level. Since the truth of a predicate in a structure depends only
on the values assigned to its free variables, and since a sentence contains
no free variables, we talk about a sentence being truein astructure, rather
than in a structure under an assignment.

When asentenceistruein astructure, wesay that the structureisamodel
of that sentence. Similarly, when each member of a set of sentencesistrue
in astructure, we say that the structureisamodel of that set. Consider, for
example, a language with a single non-Bool sort, E, with one operator,
the binary relation <, and with three variables x, y, and z of sort E. Any
structure that is amodel of the two sentences

V X:E (X < X)

VXEVY EVZE(( X <Yy Ay < 2z) =X < Z)

is commonly known as a strict partial order, and we call these sentences
axiomsfor strict partial orders.

A sentence S is alogical consequence of aset T of sentences if every
model of T isalso amode of S. For example, the sentence

VX EVYE =a(X <y A Y < X)

is a consequence of the axioms for strict partial orders, because it is true
inal strict partial orders.

A set of sentencesis closed under logical consequenceiif it containsall
itslogica consequences. A theoryisaset of sentencesclosed under logical
consequence. For example, the theory of strict partial orders is the set of
all consequences of the axioms for strict partial orders; equivadently, it is
the set of sentencestruein al strict partia orders.

A theory is complete if for every sentence S, either S or =S isin
the theory. Most of the time, we find ourselves dealing with incomplete
theories. For example, there is no computable set of sentences whose
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12 2.2. Proof and consequences

logical consequences are exactly the sentences true about the natural
numbers under the usua operations of addition and multiplication.

A set of sentences is consistent if it has a model. It is easy to show
that a sentence S is a consequence of aset T of sentences if and only if
T U {-S} isinconsistent. Likewise, atheory is consistent if and only if
it does not contain acontradiction, that is, thesentencet rue = f al se.

2.2 Proof and consequences

In the preceding section, we provided a semantic description of what it
means for a sentence S to be alogical consegquence of a set of sentences
T, namely that every model of T also be a model of S. Unfortunately,
this definition does not provide a practical means for determining when S
isalogical consequence of T. For example, T may have infinitely many
models, some of its models may have infinitely many elements, etc.

Fortunately, there is a syntactic characterization of what it meansfor S
to be alogical consequence of T. A formal deduction system consists of
a set of sentences (called logical axioms) together with a set of functions
(called deduction rules) that map finite sets of sentences (the premises of a
deduction) to asinglesentence (itsconclusion). For example, the deduction
rule

states that Q can be deduced from thepremisesPand P = Q.

A proof based onaset T of sentences is a finite sequence of sentences
each of whichis either alogical axiom, amember of T, or the conclusion
of a deduction rule applied to a set of sentences occurring earlier in the
proof. A sentence S isatheoremof T if it occursin some proof based on
T.

There arethree propertiesthat agood formal system of deduction should
POSSESS:

e It should not alow any spurious proofs. A system is sound if, for
any T, every theorem of T isreally alogical consequence of T.

¢ It should provide enough proofs. A systemis completeif, for any T,
every logical consequence of T isaso atheoremof T.
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2. A Little Bit of Logic 13

e It should be possibleto recognize what is a proof and what is not. A
system is effective if, for any computable set T of sentences, the set
of proofsbased on T is a so computable.

There are severa sound, complete, and effective forma systems of
deduction for first-order logic. For most of this book, the mere existence
of good formal systems of deduction is al that counts. The choice of
a particular system, or the details of that system (which we refer to as
“the usud rules of first-order logic”), do not really matter. What matters
is that the system is sound (because we do not want to prove anything
that isn’t true) and effective (because we want to know when we have a
proof). Completeness of a deductive system matters less, since we often
find ourselves dealing with incomplete theories. Of course, the system of
deduction used in LP, Chapter 7, is sound and effective.

This concludes our whirlwind introduction to the vocabulary and
notation of mathematical logic used in the remainder of this book. We
rely primarily on the predicate-forming operators described on pages 9—
1.
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Chapter 3

An Introduction to Larch

We begin thischapter by describing the L arch approach to specification and
illustrating it with a few small examples. Our intent isto give you ataste
of Larch. Details are reserved for later chapters. We then discuss LP, the
Larch proof assistant, a tool that supports al the Larch languages. Again,
we give only a taste. Finally, we discuss the lexical and typographical
conventions used for preparing and presenting the Larch specificationsin
this book.

3.1 Two-tiered specifications

The Larch family of languages supports a two-tiered, definitional style of
specification. Each specification has componentswritten in two languages:
one language that is designed for a specific programming language and
another language that is independent of any programming language. The
former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL).

Interface languages are used to specify the interfaces between program
components. Each specification provides the information needed to
use an interface. A critica part of each interface is how components
communi cateacrosstheinterface. Communication mechanismsdiffer from
programming language to programming language. For example, some
languages have mechanisms for signalling exceptiona conditions, others
do not. More subtle differences arise from the various parameter passing
and storage allocation mechanisms used by different languages.

It is easier to be precise about communication when the interface
specification language reflects the programming language. Specifications
written in such interface languages are generally shorter than those written
ina“universal” interface language. They are also clearer to programmers
who use components and to programmers who implement them.

Each interface language deals with what can be observed by client
programswritten in a particular programming language. It provides away
to write assertions about program states, and it incorporat es programming-
language-specific notations for features such as side effects, exception
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uses TaskQueue;
mut abl e type queue;
i mut abl e type task

task *get Task(queue q) {
nodi fies q;

ensur es
if isEmpty(q")
then result = NIL A unchanged(q)
else (*result)’ =first(q") A g =tail(q);

FIGURE 3.1. An LCL interface specification

handling, iterators, and concurrency. Its simplicity or complexity depends
largely on the simplicity or complexity of its programming | anguage.

Larch interface languages have been designed for a variety of
programming languages. The two that are discussed in this book are for
C and for Modula-3. Other interface languages have been designed for
Ada[15, 37], CLU [86], C++ [60, 90, 92], ML [93], and Smadlltalk [17].
There are also “generic” Larch interface languages that can be specialized
for particul ar programming languages or used to specify interfaces between
programsin different languages [16, 53, 61, 88].

Larch interface languages encourage a style of programming that
emphasizes the use of abstractions, and each provides a mechanism
for specifying abstract types. If its programming language provides
direct support for abstract types (as Modula-3 does), the interface
language facility is modeled on that of the programming language; if
its programming language does not (as C does not), thefacility isdesigned
to be compatible with other aspects of the programming language.

Figure 3.1 contains a sampl einterface specification for asmall fragment
of ascheduler for an operating system. The specification iswrittenin LCL
(aLarch interface language for C, described in Chapter 5). This fragment
introduces two abstract types and a procedure for selecting a task from a
task queue. Briefly, * means pointer to (asin C), resul t refers to the
value returned by the procedure, the symbol ~ is used to refer to the value
in alocation when the procedure is called, and the symbol * to refer to its
value when the procedure returns.

The specification of get Task is not self-contained. For example,
looking only at this specification there is no way to know which task
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16 3.1. Two-tiered specifications

TaskQueue: trait

i ncl udes Nat
task tuple of id: Nat, inportant: Bool
i ntroduces
new. — queue
4 __: task, queue — queue

i sEmpty, hasl nmportant: queue — Bool
first: queue — task
tail: queue — queue
asserts
queue generated by new, -
V t: task, q: queue
i SEnpt y(new) ;
—isEnpty(t 4 q);
—hasl nport ant (new);
hasl nportant(t 4 q) ==
t.inmportant v haslnportant(q);
first(t 4 q) ==
if t.inmportant v -—haslnmportant(q)
then t else first(q);
tail(t 4 q) ==
if first(t 4qg) =t then qelset dtail(q)

FIGURE 3.2. LSL specification used by getTask
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3. AnlIntroduction to Larch 17

get Task sdlects. Isit the one that has been in g the longest? Isit isthe
onein g with the highest priority?

Interface specifications rely on definitionsfrom auxiliary specifications,
written in LSL, to provide semantics for the primitive terms they use.
Specifiers are not limited to a fixed set of notations, but can use
LSL to define specialized vocabularies suitable for particular interface
specifications or classes of specifications.

Figure 3.2 contains a portion of an LSL specification that specifies the
operators used in the interface specification of get Task. Based on the
information inthisLSL specification, one can deduce that the task pointed
to by the result of get Task is the most recently inserted i npor t ant
task, if such atask exists. Otherwiseit is the most recently inserted task.

Many informal specifications have a structure similar to this. They
implicitly rely on auxiliary specifications by describing an interface in
terms of concepts with which readers are assumed to be familiar, such as
sets, lists, coordinates, and windows. But they don't define these auxiliary
concepts. Readers can misunderstand such specifications, unless their
intuitive understanding exactly matches the specifier’s. And there is no
way to be sure that such intuitions do match. LSL specifications provide
unambiguous mathematical definitionsof the termsthat appear ininterface
specifications.

Larch encourages a separation of concerns, with basic constructsin the
LSL tier and programming details in the interface tier. We suggest that
specifiers keep most of the complexity of specificationsinthe LSL tier for
several reasons:

e LS. gpecifications are likely to be more reusable than interface
specifications.

e LS. has a simpler underlying semantics than most programming
languages (and hence than most interface languages), so specifiers
arelesslikely to make mistakes, and any mistakesthey do make are
more easily found.

¢ Itiseasier to makeand to check assertionsabout semantic properties
of LSL specifications than about semantic properties of interface
specifications.

Many programming errors are easily detected by running the program,
that is, by testing it. While some Larch specifications can be executed,
most of them cannot. The Larch style of specification emphasizes brevity
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18 3.2. LSL, the Larch Shared Language

and clarity rather than executability. To make it possible to validate
specifications before implementing or executing them, Larch permits
specifiers to make assertions about specifications that are intended to
be redundant. These assertions can be checked mechanically. Several
tools that assist specifiers in checking these assertions as they debug
specifications are already in use, and others are under devel opment.t

3.2 LSL, the Larch Shared Language

LSL specifications define two kinds of symbols, operators and sorts.
The concepts of operator and sort are the same as those used in
Chapter 2. They are similar to the programming language concepts of
procedure and type, but it is important not to confuse these two sets of
concepts. When discussing L SL specifications, wewill consistently usethe
words “operator” and “sort.” When talking about programming language
constructs, wewill usethewords* procedure” (or “function,” “routine,” or
“method,” as appropriate) and “type.” Asdiscussedin Chapter 2, operators
stand for total functions from tuples of values to values. Sorts stand for
disjoint non-empty sets of values, and are used to indicate the domainsand
ranges of operators. In each interface language, “procedure’ and “type”
must mean what they mean in that programming language.

The trait is the basic unit of specification in LSL. A trait introduces
some operators and specifies some of their properties. Sometimes the trait
defines an abstract type. However, it is frequently useful to define a set of
properties that does not fully characterize atype.

Figure 3.3 shows atrait that specifies a class of tables that store values
in indexed places. It is similar to specifications in many “agebraic”
specification languages.

The specification begins by including another trait, | nt eger. This
specification, which can be found in the LSL handbook in Appendix A,
page 163, suppliesinformation about the operators +, 0, and 1, which are
used in defining the operators introduced in Tabl e.

Theintroduces clause declares aset of operators, each with itssignature
(the sorts of itsdomain and range). Signatures are used to sort-check terms
in much the sameway as procedure call sare type-checked in programming
languages.

The body of the specification contains, following the reserved word

1See Appendix D for alist.
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3. An Introduction to Larch 19

Table: trait

i ncl udes | nteger

i ntroduces
new. — Tab
add: Tab, Ind, Val — Tab
€ _: Ind, Tab — Bool
| ookup: Tab, Ind — Val
size: Tab — Int

asserts Vi, il: Ind, v: Val, t: Tab
(i € new;
i € add(t, i1, v) =i =il v i €t;
| ookup(add(t, i, v), il) ==
if i =11 then v else |ookup(t, il);
size(new) == 0;
size(add(t, i, v)) ==

if i €t then size(t) else size(t) + 1

FIGURE 3.3. Tabl e. | sl
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20 3.3. Interface specifications

assert s, equations between terms containing operators and variabl es.?
The third equation resembles a recursive function definition, since the
operator | ookup appears on both the left and right sides. However, it
merely states a relation that must hold among | ookup, add, and the
built-in operator i f __t hen__el se__; it does not fully define | ookup.
For example, it doesn't say anything about the value of the term
| ookup(new, i).

Thetheory of atrait istheset of all logical consequencesof itsassertions.
It is an infinite set of formulas in multisorted first-order logic with
equality. It contains everything that logically follows from its assertions,
but nothing else. The theory associated with Tabl e contains equalities
and disequalities that can be proved by substitution of equals for equals.
LSL also providestwo constructs for non-equational assertionsthat can be
used to generate stronger (larger) theories. These important constructs are
discussed in Chapter 4.

It isinstructiveto note some of thethingsthat Tabl e does not specify:

1. It does not say how tables are to be represented.
2. It does not give agorithmsto manipul ate tables.

3. It does not say what procedures are to be implemented to operate on
tables.

4. 1t does not say what happensif onelooksup an | nd that isnotina
Tab.

Thefirst two decisionsarein the province of theimplementation. Thethird
and fourth are recorded in interface specifications.

3.3 Interface specifications

An interface specification defines an interface between program compo-
nents, and is written in a programming-language-specific Larch interface
language. Each specification must providetheinformation needed tousean
interface and to write programsthat implement it. At thecore of each Larch
interface language is a model of the state manipulated by the associated
programming language.

2The equation connectivein LSL, ==, has the same semantics as the equality symbol,
=. It is used only to introduce another level of precedenceinto the language.
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3. AnlIntroduction to Larch 21

PROGRAM STATES

Sates are mappings from locs (abstract storage locations, also known as
objects) to values. Each variableidentifier hasatype and isassociated with
aloc of that type. The major kinds of valuesthat can be stored in locs are:

¢ basic values. These are mathematical constants, like the integer 3
and the letter A. Such values are independent of the state of any
computation.

e exposed types. These are data structures that are fully described
by the type constructors of the programming language (e.g., C's
int * or Modulae3's ARRAY [1..10] OF I NTEGER). The
representation isvisibleto, and may be relied on by, clients.

e abstract types. Asmentionedin Chapter 1, datatypesarebest thought
of ascollectionsof rel ated operationson collections of related val ues.
Abstract types are used to hide representation information from
clients.

Each interface language provides operators (e.g., " and ' ) that can be
applied to locs to extract their values in the relevant states (usually the
pre-state and the post-state of a procedure).

Each loc's type definesthe kind of valuesit can mapto in any state. Just
as each loc has auniquetype, each LSL term has aunique sort. To connect
the two tiers in a Larch specification, there is a mapping from interface
language types (including abstract types) to LSL sorts. Each type of basic
value, exposed type, and abstract type is based on an LSL sort. Interface
specificationsare written using types and val ues. Properti es of thesevalues
are defined in LSL, using operators on the corresponding sorts.

For each interface language, a standard LSL trait defines operators that
can be applied to values of the sorts that the programming language’s
basic types and other exposed types are based on. Users familiar with
the programming language will aready have an intuitive understanding of
these operators. Abstract typesare typically based on sortsdefined in traits
supplied by specifiers.

PROCEDURE SPECIFICATIONS

The specification of each procedure in an interface can be studied,
understood, and used without reference to the specifications of other
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22 3.3. Interface specifications

procedures. A specification consists of a procedure header (declaring the
types of its arguments and results) followed by a body of the form:
requires reqP
nodi fi es nodLi st
ensures ensP

A specification placesconstraintson both clientsand i mplementati onsof
the procedure. The requires clauseis used to state restrictions on the state,
includingthevaluesof any parameters, at thetime of any call. The modifies
and ensures clauses place constraints on the procedure’s behavior when it
is called properly. They relate two states, the state when the procedure is
called, the pre-state, and the state when it terminates, the post-state.

A requiresclauserefersonly to valuesinthepre-state. An ensures clause
may also refer to vauesin the post-state.

A modifies clause says what |ocs a procedure is alowed to change (its
target list). It says that the procedure must not change the value of any
locs visible to the client except for those in the target list. Any other loc
must have the same value in the pre and post-states. If thereis no modifies
clause, then nothing may be changed.

For each call, it is the responsibility of the client to make the requires
clause truein the pre-state. Having done that, the client may assumethat:

¢ the procedure will terminate,
¢ changeswill belimited to thelocs in the target list, and
¢ the postcondition will be true on termination.

The client need not be concerned with how this happens.

The implementor of a procedure is entitled to assume that the
precondition holds on entry, and is only responsible for the procedure’'s
behavior if it is. A procedure’s behavior is totally unconstrained if its
precondition isn’t satisfied, so it is good style to keep the requires clause
weak. An omitted requires clauseisequivalenttor equi res true (the
weakest possible requirement).

TWO INTERFACE LANGUAGE EXAMPLES

Figure 3.4 contains afragment of a specification written in LCL (aLarch
interface language for Standard C). Figure 3.5 contains a fragment of
a similar specification written in LM3 (a Larch interface language for
Modula-3). They use the same Tabl e trait of Figure 3.3. We present
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nut abl e type tabl e;

uses Tabl e(table for Tab, char for Ind,
char for Val, int for Int);

constant int naxTabSi ze;

table tabl e_create(void) {
ensures result’ = new A fresh(result);

bool table_add(table t, char i, char c) {

nodi fies t;
ensures result = (size(t”) < nmaxTabSize v i € t")
A (if result then t’ = add(t”, i, c)

elset’ =1t7);

char table_read(table t, char i) {
requires i et’;
ensures result = lookup(t”, i);

}

FIGURE 3.4. A Sample LCL Interface Specification
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| NTERFACE Tabl e;
<* TRAI TS Tabl e(CHAR FOR I nd, CHAR FOR Val,
| NTEGER FOR Int) *>
TYPE T <: OBJECT
METHODS
Add(i: CHAR c: CHAR) RAI SES {Full};
Read(i: CHAR): CHAR
END;
PROCEDURE Create( ): T,
CONST MaxTabSi ze: | NTEGER = 100;
EXCEPTI ON Ful I ;

*
FIELDS OF T
val : Tab;
METHOD T. Add(i, c)
MODI FI ES SELF. val
ENSURES SELF.val’ = add(SELF.val, i, c)
EXCEPT si ze( SELF.val) > MaxTabSi ze
A —(i € SELF.val)
=> RAI SEVAL = Full A UNCHANGED( ALL)
METHOD T. Read(i)
REQUI RES i € SELF. val
ENSURES RESULT = | ookup( SELF.val, i)
PROCEDURE Creat e
ENSURES RESULT.val = new A FRESH(RESULT)

*

>
END Tabl e.

FIGURE 3.5. A Sample LM3 Interface Specification
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voi d choose(int x, int y) int z; {
nodi fi es z;
ensures z’ = X V z

}

FIGURE 3.6. A specification of choose

these exampl es here simply to convey an impression of how programming
language dependencies influence Larch interface languages. At this point,
you should not be concerned with their exact meaning; the notations used
are described in detail in Chapters 5 and 6.

3.4 Relating implementations to specifications

In this book we emphasize using specifications as a communication
medium. Programmers are encouraged to become clients of well-specified
abstractions that have been implemented by others. This book does not
discuss the process of implementing specifications; there is already a
copious literature on the subject.

One of the advantages of Larch’s two-tiered approach to specification
is that the relationship of implementations to specifications is relatively
straightforward. Consider, for example, theLCL specificationinFigure 3.6
and the C implementation in Figure 3.7.

The specification defines a relation between the program state when
choose iscaled and the state when it returns. This relation contains al
pairs of states <pre, post> in which

¢ the states differ only in the value of the global variable z, and

e inpost the value of z isthat of one of the two arguments passed to
choose.

The implementation also defines a relation on program states. This
relation contains al pairs of states <pre, post> in which

¢ the states differ only in the value of the variable z, and

¢ inpost the value of z isthe maximum of the two arguments passed
tochoose.
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void choose(int x, int y) {
if (x >y) z = x;
else z =y,

FIGURE 3.7. An implementation of choose

We say that the implementation of choose in Figure 3.7 satisfies the
specificationin Figure 3.6—or isacorrect implementation of Figure3.6—
becausetherel ation defined by theimplementationisasubset of therelation
defined by the specification. Every possible behavior that can be observed
by aclient of theimplementation is permitted by the specification.

The definition of satisfaction we have just given is not directly useful.
In practice, formal arguments about programs are not usually made by
building and comparing relations. Instead, such proofs are usually done by
pushing predicates through the program text, in ways that can be justified
by appeal to the definition of satisfaction. A description of how to do this
appears in the books [21, 36].

The notion of satisfactionisabit more complicated for implementations
of abstract types, because the implementor of an abstract type is working
simultaneously at two level s of abstraction. To implement an abstract type,
one chooses data structures to represent values of the type, then writesthe
procedures of the type in terms of that representation. However, since the
specifications of those procedures arein terms of abstract values, one must
be able to relate the representation data structures to the abstract values
that they represent. Thisrelation isan essential (but too oftenimplicit) part
of the implementation.

Figure 3.8 shows an implementation of the LCL specification in
Figure 3.4. A value of the abstract typet abl e isrepresented by a pointer
to a struct containing two arrays and an integer. You need not look at the
detail sof the code to understand the basi cideabehind thisimplementation.
Instead, you should consider the abstraction function and representation
invariant.

The abstraction function is the bridge between the data structure used

3«Correct” is a dangerous word. It is not meaningful to say that an implementation
is “correct” or “incorrect” without saying what specification it is claimed to satisfy. The
technical senseof “correct” that is used in the formal methods community does not imply
“good,” or “useful,” or even “not wrong,” but merely “ consistent with its specification.”
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#i ncl ude "bool . h"
#defi ne naxTabSi ze (10)

typedef struct {char ind[naxTabSi ze];
char val [ maxTabSi ze] ;
int next;} tableRep;
typedef tableRep * table;

table table_create(void) {

table t;

t = (table) nmalloc(sizeof(tableRep));

if (t == 0) {
printf("Malloc returned null in table_create\n");
exit(1);

}

t->next = 0;

return t;

}
bool table_add(table t, char i, char c¢) {

int j;
for (j =0; j < t->next; j++)
if (t->ind[j] ==1i) {
t->val[j] = c;
return TRUE
}
if (t->next == naxTabSize) return FALSE;
t->val [t->next ++] = c;
return TRUE
char table_read(table t, char i) {
int j;
for (j = 0; TRUE | ++)
if (t->ind[j] ==1i) return t->val[j];

FIGURE 3.8. Implementing an abstract type

27
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in the implementation of an abstract type and the abstract values being
implemented. It maps each value of the representation type to a value of
the abstract type. Here, we represent at abl e by a pointer, call it t, to
a struct. If the triple <i nd, val, next> contains the values of the
fields of that struct in some state s, then we can define the abstract value
represented by t instates ast oTab(<i nd, val, next>),where
toTab( <ind, val, next>) ==
if next = 0 then enmpty

el se insert(toTab( <next - 1, ind, val >),
i nd[ next], val[next])

Abstraction functions are often many-to-one. Here, for example, if
t->next = 0, t represents the empty t abl e, no matter what the
contentsof t - >i nd andt - >val .

The typedefsin Figure 3.8 define a data structure sufficient to represent
any vaue of type t abl e. However, it is not the case that any vaue
of that data structure represents a value of type t abl e. In defining the
abstraction function, we relied upon some implicit assumptions about
which data structures were valid representations. For example, t oTab
is not defined when t - >next is negative. A representation invariant
is used to make such assumptions explicit. For this implementation, the
representation invariant is

e Thevaueof next liesbetween 0 and nraxTabSi ze:

0 < t—>next A t—>next < maxTabSize

¢ and no index may appear more than once in the fragment of i nd
that lies between 0 and next :
Vi,j:int
(0 <i AT <] A < t—>next)
= (t—>ind)[i] # (t—>ind)[j]

To show that that this representation invariant holds, we use a proof
technique called data type induction. Since t abl e is an abstract type,
we know that clients cannot directly access the data structure used to
represent at abl e. Therefore, al values of typet abl e that occur during
program execution will have been generated by the functions specified
in the interface. So to show that the invariant holds it suffices to show,
reasoning from the code implementing the functionson t abl es, that
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¢ thevalue returned by t abl e _cr eat e satisfies the invariant (this
isthe basis step of the induction),

¢ whenever t abl e_add is cdled, if the invariant holds for t = then
theinvariant will also holdfort ' , and

e whenevert abl e_r ead iscdled, if theinvariant holdsfor t ~ then
theinvariant will also hold for t * .

A dlightly different data type induction principle can be used to reason
about clients of abstract types. To prove that a property holds for all
instances of thetype, i.e., that it is an abstract invariant, one inducts over
all possible sequences of callsto the procedures that create or modify locs
of thetype. However, one reasons usi ng the specifications of the procedures
rather than their implementations. For example, to show that thesi ze(t)
is never greater than maxTabSi ze one shows that

¢ the gspecification of t abl e_cr eat e implies that the size of the
t abl e returned is not greater than maxTabSi ze, and

¢ the gpecification of t abl e_add combined with the hypothesis
t” < maxTabSi ze impliesthatt’ < maxTabSi ze.

Given the abstraction function, it is relatively easy to define what it
means for the procedure implementations in Figure 3.8 to satisfy the
specificationsin Figure 3.4. For example, we say that the implementation
of t abl e_r ead satisfies its specification because the image under the
abstraction function of the relation between pre and post-states defined by
theimplementation(i.e., what one getsby applying the abstraction function
toall valuesof typet abl e intherelation defined by the implementation)
isasubset of the relation defined by the specification. Notice, by the way,
that any argument that the implementation of t abl e r ead satisfies its
specification will rely on both the r equi r es clause of the specification
and on the representation invariant.

3.5 LB the Larch proof assistant

The discussionsof LSL, LCL, and LM3 have alluded to tools supporting
those languages. LP is atool that is used to support al three. Chapter 7,
which is about reasoning about LSL specifications, contains a brief
description of LP. Here we give merely a glimpse of its use.
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LPisaproof assistant for a subset of multisorted first-order logic with
equality, thelogic—described in Chapter 2—onwhichthe Larch languages
are based. It is designed to work efficiently on large problems and to be
used by specifiers with relatively little experience with theorem proving.
Its design and development have been motivated primarily by our work
on LSL, but it also has other uses, for example, reasoning about circuit
designs [75, 79], agorithmsinvolving concurrency [25], data types [92],
and algebraic systems[65].

LP is intended primarily as an interactive proof assistant or proof
debugger, rather than as a fully automatic theorem prover. Its design is
based on the assumption that initial attemptsto state and prove conjectures
usually fail. So LP is designed to carry out routine (but possibly lengthy)
proof steps automatically and to provide useful information about why
proofs fail. To keep users from being surprised and confused by its
behavior, LP does not employ complicated heuristics for finding proofs
automaticaly. It makes it easy for users to employ standard techniques
such as proof by cases, by induction, or by contradiction, but the choice
among such strategiesis|eft to the user.

THE LIFE CYCLE OF PROOFS

Proving issimilar to programming: proofs are designed, coded, debugged,
and (sometimes) documented.

Before designing a proof it is necessary to formalize the things being
reasoned about and the conjecture to be proved. The design of the proof
proper starts with an outline of its structure, including key lemmas and
methods of proof. The proof itself must be given in sufficient detail to be
convincing. What it means to be convincing depends on who (or what) is
to be convinced. Experience shows that humans are frequently convinced
by unsound proofs, so we look for a mechanical “skeptic” that isjust hard
enough (but not too hard) to convince.

Once part of a proof has been coded, L P can be used to debug it. Proofs
of interesting conjectures hardly ever succeed the first time. Sometimes
the conjecture is wrong. Sometimes the formalization is incorrect or
incompl ete. Sometimesthe proof strategy isflawed or not detailed enough.
LPprovidesavariety of facilitiesthat can be used to understand the problem
when an attempted proof fails.

While debugging proofs, users frequently reformulate axioms and
conjectures. After any change in the axiomatization, it is necessary to
recheck not only the conjecture whose proof attempt uncovered the
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Nat: trait
i ncl udes AC(+, Nat)
i ntroduces
0: — Nat
s: Nat — Nat
< __: Nat, Nat — Boo
asserts
Nat generated by 0, s
Vi, j, ki Nat
i +0==1i;
i+ s(j) ==s(i +]j);
(i < 0);
0 < s(i);
s(i) < s(j) ==i <]
inmplies Vi, j, k: Nat
i < j =i < (j +Kk)

FIGURE 3.9. A trait containing a conjecture

problem, but also the conjectures previously proved using the old axioms.
LP hasfacilities that support such regression testing.

LPwill, upon request, record asessioninascript filethat can bereplayed.
LP “prettyprints’ script files, using indentation to reflect the structure of
proofs. It also annotates script files with information that indicates when
subgoalsare introduced (e.g., in aproof by induction), and when subgoals
and theorems are proved. On request, as L P replays ascript fil e, it will halt
replay at the first point where the annotations and the new proof diverge.
This checking makesit easier to keep proof attempts from getting “out of
sync” with their author’s conception of their structure.

A SMALL PROOF

Figure 3.9 contains a short LSL specification, including a simple
conjecture (following the reserved word i npl i es) that is supposed to
follow from the axioms. Figure 3.10 showsa script for an LP proof of that
conjecture.

The decl ar e commands introduce the variables and operators in
the LSL specification. The assert commands supply the LSL axioms
relating the operators; the Nat gener at ed by assertion provides an
induction scheme for Nat . The pr ove command initiates a proof by
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set nane nat
decl are sort Nat
declare variables i, j, k: Nat
decl are operators
0: — Nat
s: Nat — Nat
+: Nat, Nat — Nat
<: Nat, Nat — Bool

assert Nat generated by 0, s
assert ac +

assert

i +0==

i+ s(j) ==s(i +]j)
-(i < 0)

0 < s(i)

s(i) < s(j) ==i < j

set nanme | emma
prove i < j =i < (j + k) by induction on j
<> 2 subgoals for proof by induction on j
[1 basis subgoal
resune by induction on i
<> 2 subgoals for proof by induction on i
[1 basis subgoal
[1 induction subgoal
[1 induction subgoal
[1 conjecture
ged

FIGURE 3.10. Sample LP proof script
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induction of the conjecture. The diamond (<>) annotations are provided
by LP; they indicate the introduction of subgoals for the inductions. The
box ([ ] ) annotations are a so provided by LP; they indicate the discharge
of subgoals and, finally, of the main proof. Ther esume command starts
a nested induction. No other user intervention is needed to complete this
proof. The ged command on thelast line asks L P to confirm that there are
no outstanding conjectures.

3.6 Lexical and typographic conventions

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may have its own lexical conventions and capabilities. To
avoid conflicts, LSL assigns fixed meanings to only a small number of
characters. To conformtolocal conventionsand to exploitlocaly available
capabilities, LSL's character and token classes are extensible, and can be
tailored for particular purposes by initialization files. Since LSL terms
appear in interface specifications, corresponding extensibility is a part of
each interface language. Appendix C explains the structure of these files
and givestheinitialization files used in checking the specifications in this
book.

Thereare several semantically equivalent forms of each Larch language.
Any of these forms can be translated mechanically into any other without
losing information.

e Presentationforms are used in environments, such as this book, that
haverich character setswith symbolssuchasV, 3, A, v, €.

¢ Interchange form is an encoding of the language using a widely
available subset of the SO Latin* character set. Characters outside
this subset are represented by extended character s—sequences of
characters from the subset, preceded by a backslash (or other
designated character). Interchange form is the “lowest common
denominator” for each Larch language. Each Larch tool can parseit
and generate it on demand.

¢ Interactiveformsmay be used by Larch editors, browsers, checkers,
etc., for interaction with users. Many such formswill not be limited

“Thisis also a subset of the older ASCI| subset.
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to character strings for input and output (e.g., they will use menus

and pointing), and some may impose additional constraints and
equivalences (e.g., case folding, operator precedence).
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Chapter 4
LSL: TheLarch Shared Language

Thischapter providesatutorial introduction thethe L arch Shared Language
(LSL). It begins by systematically working through the features of the
language, illustrating each with a short example. It concludes with a
dlightly longer example, designed to illustrate how the various features
of the language can be used in concert.

4.1 Equational specifications

LSL's basic unit of specification is a trait. Consider, for example, the
specification of tablesthat store valuesin indexed places, Figure4.1. This
issimilar to a conventional algebraic specification, as it would be written
in many languages [4, 20, 24, 96].

The trait can be referred to by its name, Tabl el. This should not be

Tablel: trait
i nt roduces
new. — Tab

add: Tab, Ind, Val — Tab
€ __: Ind, Tab — Boo
| ookup: Tab, Ind — Va

i SEnpty: Tab — Boo

size: Tab — Int

0,1: — Int
4+ o Int, Int — Int
asserts Vi, il: Ind, val: Vval, t: Tab
(i € new;
i € add(t, i1, val) ==i =il v i €t;
| ookup(add(t, i, val), i1l) ==
if i =i1 then val else |ookup(t, i1);
si ze(new) ==
size(add(t, i, val)) ==

if i €t then size(t) else size(t) + 1
i SEmpty(t) ==size(t) =0

FIGURE 4.1. A table trait
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confused withthe name of adataabstraction (e.g., thesort Tab) or operator
(e.g.,| ookup). Thenameof atrait isindependent of the namesthat appear
withinit.

Thepart of thetraitfollowingi nt r oduces declaresalist of operators,
each with its signature (the sorts of its domain and range). As discussed
in Chapter 2, an operator stands for atota function that maps a tuple of
values of its domain sorts to its range sort. Every operator used in atrait
must be declared; signaturesare used to sort-check termsin much the same
way as expressions are type-checked in programming languages. Sorts are
denoted by identifiers and are declared implicitly by their appearance in
signatures.

The remainder of this trait constrains the operators by means of
equations. An equation consists of two terms of the same sort, separated
by = or ==. The operators = and == are semantically equivalent, but havea
different precedence, asdiscussed bel ow. We use== asthe main connective
in equations. Equations of the form term==t r ue can be abbreviated by
simply writing term; thus the first equation in Tabl el is an abbreviation
for

(i € new) == true

Double underscores (__) in an operator declaration indicate that the
operator will be used in mixfix terms. For example, € is declared as a
binary infix operator. Infix, prefix, postfix, and distributed operators (such
as_+ -, {3}, [_],andif_then_el se_)areintegra parts
of many familiar mathematical and programming notations, and their use
can contribute substantially to the readability of specifications.

LSL's grammar for mixfix terms is intended to ensure that legal terms
parse as readers expect—even without studying the grammar. LSL has a
simple precedence scheme for operators:

¢ postfix operators that consist of a dot followed by anidentifier (asin
field sdlectors, e.g., . fi r st) bind most tightly;

e other user-defined operators and the built-in Boolean negation
operator — bind moretightly than

e the built-in equality operators (= and #), which bind more tightly
than

"However, writers of specifications should take pity on readers and study the grammar.
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e the built-in propositiona connectives (A, Vv, and =), which bind
more tightly than

¢ the built-in conditional connective (i f __t hen__el se_)), which
binds more tightly than

¢ the equation connective (==).

For example, the equationv == x + w.a.b =y VvV z isequiv-
denttotheteemv = (((x + ((wa).b)) =vy) v z).LSL d-
lows unparenthesized infix terms with multiple occurrences of an operator
at the same precedence level, but not different operators; it associates such
terms from left to right. Fully parenthesized terms are always acceptable.
Thusx Ay A zisequivdentto(Xx A'y) A z,butx vyAZz
must bewrittenas(x vV y) A zorasx V (y A z),dependingon
which is meant.

Each well-formed trait defines a theory (a set of sentences closed
under logical consequence, see Chapter 2) in multisorted first-order logic
with equality. Each theory contains the trait’s assertions, the conventiona
axiomsof first-order logic, everything that followsfrom them, and nothing
else. This loose semantic interpretation guarantees that formulas in the
theory follow only from the presence of assertionsin thetrait—never from
their absence. Thisisin contrast to a gebraic specification |anguages based
oninitia algebras[34] or final algebras[85]. Using thelooseinterpretation
ensuresthat all theorems proved about an incomplete specifi cation remain
valid whenit is extended.

Each trait should be consistent: it must not define atheory containingthe
equationt rue == f al se. Consistency isoften difficult to proveandis
undecidable in general. Inconsistency is often easier to detect and can be
a useful indication that there is something wrong with a trait. Detecting
inconsistenciesis discussed in Chapter 7.

4.2 Stronger theories

Equationa theories are useful, but a stronger theory is often needed, for
example, when specifying an abstract type. The constructs gener at ed
by andpartiti oned by providetwowaysof strengthening equationa
specifications.

A generated by clause asserts that a list of operators is a complete set
of generatorsfor asort. That is, each value of the sort is equal to one that

www.manaraa.com



38 4.2. Stronger theories

can be written as a finite number of applications of just those operators,
and variables of other sorts. This justifies a generator induction schema
for proving things about the sort. For example, the natural numbers are
generated by 0 and succ, and the integers are generated by 0, succ, and
pred.

The assertion

Tab generated by new, add

if added to Tabl el, could be used to prove theorems by induction over
newand add, since, according to thisassertion, any value of sort Tab can
be constructed from new by a finite number of applications of add. For
example, to prove

Vit:Tab, i:Ind (i €t = size(t) > 0)
one can do an inductive proof with the structure

¢ Basisstep:
Vi:lnd (i € new = size(new) > 0)
¢ Induction step:

V t:Tab, il:ind, vl1:Val
(Vi:lInd (i €t = size(t) > 0)
= (Vi:lnd (i € add(t, i1, vl)
= size(add(t, i1, v1)) > 0)))

A partitioned by clause asserts that a list of operators constitutes a
complete set of observers for a sort. That is, al distinct values of the
sort can be distinguished using just those operators. Terms that are not
distinguishable using any of them are therefore equal. For example, sets
are partitioned by €, because setsthat contain the same elementsare equal .
Each partitioned by clause is a new axiom that justifies a deduction rule
for proofs about values of the sort. For example, the assertion

Tab partitioned by €, |ookup

adds the deduction rule
Viliind (il etl=1i1¢€t2),
Viliind (lookup(tl, il1l) = lookup(t2, il)))

www.manaraa.com



4. LSL: The Larch Shared Language 39

If added to Tabl el this partitioned by clause could be used to derive
theorems that do not follow from the equations alone. For example, to
prove the commuitativity of add of the same value,

Vt:Tab, i,il:lnd, v Va
(add(add(t, i, v), il, v)
= add(add(t, i1, v), i, Vv))

one discharges the two subgoals

Vi2:ind
(i2 € add(add(t, i, v), i1, v)
=12 € add(add(t, i1, v), i, v))
Vi2:ind
(1 ookup(add(add(t, i, v), i1, v), i2)
= |l ookup(add(add(t, i1, v), i, v), i2))

4.3 Combining traits

Tabl el contains three operators that it does not define: O, 1, and +.
Without more information about these operators, the definition of si ze
is not particularly useful. We could add assertions to Tabl el to define
these operators. However, it is often better to specify such operatorsin a
separate trait that is included by reference. This makes the specification
more structured and makesit easier to reuse existing specifi cations, such as
thetraitsgivenin Appendix A. We might removethe explicit i ntroductions
of these operatorsin Tabl el, and instead add an external reference to the
trait | nt eger (page 163):

i ncl udes I nteger

which not only introduces the operators, but also defines their properties.

The theory associated with an including trait is the theory associated
with the union of itsi nt r oduces and assert s clauses with those of
itsincluded traits.

It is often convenient to combine several traits dealing with different
aspects of the same operator. Thisis common when specifying something
that is not easily thought of as a data type. Consider, for example,
the specifications of properties of relations in Figure 4.2. The trait
equi val encel has the same associated theory as the less structured
trait equi val ence2.
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reflexive: trait
introduces __ ¢ _ : T, T — Bool
asserts vV x: T
X ¢ X

synmetric: trait

introduces __ o _: T, T — Bool
asserts VvV x, y: T
X oy ==y o X

transitive: trait
introduces __ o __: T, T — Bool
asserts v x, vy, z: T
(X oy Ayoz) => X0z

equi val encel: trait
i ncl udes refl exive, synetric, transitive

equi val ence2: trait

introduces __ ¢ __: T, T — Bool
asserts v x, y, z: T

X o X;

X oy ==Yy o X

(X oy Ayoz) => X0z

FIGURE 4.2. Specifications of kinds of relations
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equi val ence: trait
i ncl udes
(reflexive, symretric, transitive)(= for o)

FIGURE 4.3. An example of renaming

4.4 Renaming

Thetrait equi val encel relies heavily on the use of the same operator
symboal, ¢, and the same sort identifier, T, in the three included traits. In
the absence of such happy coincidences, renaming can be used to make
names coincide, to keep them from coinciding, or simply to replace them
with more suitable names, asin Figure 4.3, where ¢ isreplaced by a more
customary symbol for an equivaence relation.

Ingeneral, thephrase Tr( namel f or name2) standsforthetrait Tr with
every occurrence of name2 (which must be either a sort or an operator)
replaced by namel. If name2 isasort, thisrenaming changesthe signatures
of al of the operatorsin Tr in whose sighatures name2 appears.

The two specifications in Figure 4.4 have the same theory. Note that
the infix operator __c__ was replaced by the operator def i ned, and that
the operator | ookup was replaced by the mixfix operator _ [ __]. All
renamings preserve the order of operands.

Any sort or operator in atrait can berenamed whenthat trait i sreferenced
in another trait. Some, however, are morelikely to be renamed than others.
It is often convenient to single these out so that they can be renamed
positionally. For example, if the header for the trait had been

SparseArray(Val, Arr): trait
the reference
i ncl udes SparseArray(Int, IntArr)

would be equivaent to

i ncl udes SparseArray(Int for Val, IntArr for Arr)

45 Stating intended consequences

It is not possible to prove the “correctness’ of a specification, because
there is no absolute standard against which to judge correctness. But since
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SparseArray: trait
i ncl udes Tabl el(Arr for Tab, defined for g,
assign for add, _ [__] for lookup, Int for Ind)

Spar seArrayExpanded: trait
i ntroduces
new. — Arr
assign: Arr, Int, Val — Arr
defined: Int, Arr — Bool
_[_1: Arr, Int — Val
i sEmpty: Arr — Bool
size: Arr — Int
0,1: — Int
_+ _tInt, Int — Int
asserts Vi, il: Int, val: Val, t: Arr
—defined(i, new;
defined(i, assign(t, i1, val)) ==
i =il v defined(i, t);

assign(t, i, val)[il] ==

if i =il then val else t[i1l];
si ze(new) == 0;
size(assign(t, i, val)) ==

if defined(i, t) then size(t) else size(t) + 1;
i SEmpty(t) ==size(t) =0

FIGURE 4.4. Two specifications of sparsearrays
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specificationscan contain errors, specifiersneed helpinlocatingthem. LSL
specifications cannot, in general, be executed, so they cannot be tested in
the way that programs are commonly tested. LSL sacrifices executability
in favor of brevity, clarity, flexibility, generality, and abstraction. To
compensate, it provides other waysto check specifications.

This section briefly describes ways in which specifications can be
augmented with redundant information to be checked during validation.
Chapter 7 discussesthe use of L P, the Larch proof assistant, in specification
debugging.

Checkable properties of LSL specifications fall into three categories:
consistency, theory containment, and compl eteness. As discussed earlier,
the requirement of consistency means that any trait whose theory contains
theequationt rue == fal se isillegal.

Implies clauses make claims about theory containment. Suppose we
think that a consequence of the assertions of Spar seArr ay is that no
array with a defined eement is empty. To formalize this claim, we could
addto Spar seArr ay

inplies V a: Arr, i: Int
defined(i, a) = -isEmpty(a)

The theory to be implied can be specified using the full power of LSL,
including equations, generator clauses, partitioning clauses, and references
to other traits. Attempting to verify that such a theory actually isimplied
can be helpful in error detection, as discussed in Chapter 7. Implications
also help readers confirm their understanding. Finally, they can provide
useful lemmas that will simplify reasoning about specifications that use
thetrait.

LSL doesnot require that each trait define a completetheory, that is, one
in which each sentence is either true or false. Many finished specifications
(intentionally) do not fully defineall their operators. Furthermore, it can be
useful to check the compl eteness of some definitionslong before finishing
the specification they are part of. Therefore, instead of buildinginasingle
test of completeness that is applied to al traits, LSL provides a way to
include within atrait specific checkable claims about completeness, using
converts clauses.

Adding theclaim

i mplies converts i sEmpty

to Tabl el saysthat thetrait’'saxiomsfully definei sEnpt y. Thismeans
that, if the interpretations of al the other operators are fixed, thereis only
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oneinterpretationof i sEnpt y that satisfiestheaxioms. (A morecomplete
discussion of the meaning of convert s iscontained in Section 7.1.)
The stronger claim

i mplies converts isEnpty, | ookup

however, cannot be verified, because the meaning of terms of the form
| ookup(new, i) isnot defined by the trait. This incompletenessin
Tabl el could be resolved by adding another axiom to the trait, perhaps

| ookup(new, i) == errorVal

But it isgenerally better not to add such axioms. The specifier of Tabl el
should not be concerned with whether the sort Val has an err or Val
and should not be required to introduceirrelevant constraintson | ookup.
Extra axioms give readers more details to assimilate; they may preclude
useful speciaizations of a general specification; sometimes there simply
is no reasonable axiom that would make an operator convertible (consider
division by 0).

LSL providesanexenpt i ng clausethat liststermsthat are not claimed
to be defined.? Theclaim

i mplies converts isEnpty, | ookup
exenpting V i: Ind | ookup(new, i)

meansthat i SEnpty and| ookup arefully defined by the trait’s axioms
plus interpretations of the other operators and of al terms of the form
| ookup(new, i).Thisisprovablefrom the specification of Tabl el.

4.6 Recording assumptions

Many traits are suitable for use only in certain contexts. Just as we write
preconditions that document when a procedure may properly be caled,
we write assumptionsin traits that document when atrait may properly be
included. As with preconditions, assumptions impose a proof obligation
on the client, and may be presumed within the trait containing them.

It isuseful to construct general specifications that can be speciaized in
avariety of ways. Consider, for example, the specification in Figure 4.5.
We might specialize this to | nt eger Bag by renaming E to | nt and

2Thisis different from “that are claimed not to be defined.”
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BagO(E): trait

i ntroduces
{}: — B
insert, delete: E,L, B - B
€ _: E B — Bool
asserts

B generated by {}, insert
B partitioned by delete, ¢
vV b: B, e, el, e2: E
delete(e, {}) =={};
del ete(el, insert(e2, b)) ==
if el = e2thenb
el se insert(e2, delete(el, b));

—(e €{});

el € insert(e2, b) == el = e2 v el € b

FIGURE 4.5. A specification of bags
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Bagl(E): trait
i ncl udes BagO, | nteger

i ntroduces
rangeCount: E, E, B — Int
< _: E, E — Bool

asserts Vv el, e2, e3: E b: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el <« e3 A e3 < e2 then 1 else 0)

FIGURE 4.6. A specialization of Bag0

including it in atrait in which operators dealing with | nt are specified,
for example,

IntegerBag: trait
i ncl udes | nteger, BagO(lnt)

The interactions between | nt eger and BagO are limited. Nothing in
BagO depends on any particular operators being introduced in including
traits, let alone their having any specia properties. Therefore Bag0 needs
no assumptions.

Consider, however, extending BagO to Bagl by adding an operator,
r angeCount , to count the number of entriesin a B that lie between two
values, asin Figure 4.6.

Aswritten, Bag1 saysnothing about the propertiesof the < operator. But
it probably doesn’t make sense in any speciaization unless < provides an
ordering on the values of sort E. We cannot define < withinBag1, because
it will depend onthetrait using Bagl. What we need isan assumes clause,
asinFigure4.7.

Since Bag2 may presumeits assumptions, its (local) theory isthe same
asif Tot al Or der ( E) , page 194, had been included rather than assumed;
Bag2 inherits all the introductions and assertions of Tot al O der .
Therefore, the assumption of Tot al Or der can be used to derive various
properties of Bag2, for example, that r angeCount is monotonicin its
second argument, as claimed in theimplies clause.

Thedifference betweenassunes andi ncl udes appearswhen Bag?2
is used in another trait. Whenever atrait with assumptionsisincluded or
assumed, its assumptions must be discharged. For example, in
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Bag2(E): trait
assunes Tot al Order (E)
i ncl udes BagO, | nteger
i ntroduces rangeCount: E, E, B — Int
asserts Vv el, e2, e3: E b: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el <« e3 A e3 < e2 then 1 else 0)
inplies V el, e2, e3: E, b: B
el < e2 =
rangeCount (e3, el, b) < rangeCount(e3, e2, b)

FIGURE 4.7. An example of an assumption

I ntegerBagl: trait
i ncl udes I nteger, Bag2(lnt)

the assumption to be discharged is that the (renamed) theory associated
with Tot al Or der is a subset of the theory associated with the rest
of I nt eger Bagl (i.e, I nt eger). When a trait includes a trait with
assumptions, it is often possible to confirm that these assumptions are
syntactically discharged by noticing that the same traits are assumed or
included by theincluding trait. For example, the |l nt eger trait, page 163
directly includes Tot al Or der. A more complete discussion of how
assumptionsare discharged is contained in Chapter 7.

4.7 Built-in operators and overloading

In our examples, we have freely used the predicate connectives defined
in Chapter 2. We have also used some heavily overloaded and apparently
unconstrained operators: i f __t hen__el se__, =, and #. These operators
are built into the language. Thisallows them to have appropriate syntactic
precedence. More importantly, it guarantees that they have consistent
meanings in all LSL specifications, so readers can rely on their intuitions
about them.

Similarly, LSL recognizes decima numbers, such as 0, 24, and 1992,
without explicit declarations and definitions. In principle, each literal
could be defined within LSL, but such definitions are not likely to
advanceanyone’ sunderstanding of thespecification. Deci nmal Li t er al ,
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OrderedString(E, Str): trait
assunes Tot al Order (E)
i ncl udes DerivedOrders(Str)
i ntroduces
enpty: — Str
-] _+ E Str — Str
< 1 Str, Str — Bool
asserts
Str generated by empty, -|
Ve el: E s, sl: Str
empty < (e -| s);
-(s < enpty);
(e -] s) < (el -] s1) ==
e <el v (e==¢el A s < sl)
inmplies Total Order(Str)

FIGURE 4.8. An example of overloading

page 164 is a predefined quasi-trait that implicitly defines all the numerals
that appear in a specification.

In addition to the built-in overloaded operators and numbers, LSL
provides for user-defined overloadings. Each operator must be declared
in an i ntroduces clause and consists of an identifier (e.g., enpty)
or operator symbol (e.g., --<__) and a signature. The signatures of most
occurrences of overloaded operators are deduciblefrom context. Consider,
for example, Figure 4.8.3 Theoperator symbol < isused inthelast equation
to denote two different operators, one relating terms of sort St r, and the
other, terms of sort E, but their contexts determine unambiguously which
iswhich.

L SL providesnotationsfor disambiguating an overl oaded operator when
context does not suffice. Any subterm of aterm can be quaified by itssort.
For example, a: Sina: S = b explicitly indicates that a is of sort S.
Furthermore, since the two operands of = must have the same sort, this
qualification also implicitly defines the signatures of = and b. The last
axiom in Figure 4.8 could also be written as

(e -| s):Str < (el -| sl):Str ==
e:E < el:E Vv (e = el A s:Str < sl1:Str)

3Deri vedOr der s isin Appendix A, page195. It relates the ordering relations <, >,
<, and > to each other.
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i ntroduces
cold, warm hot: — Tenp

succ: Tenp — Tenp
asserts
Tenmp generated by cold, warm hot

equati ons
cold # warm
cold # hot;
warm # hot ;
succ(col d) == warm
succ(warm == hot

FIGURE 4.9. Expansion of an enumeration shorthand

Ouitside of terms, overl oaded operators can be disambiguated by directly
affixing their signatures, for example

i mplies converts <:Str, Str—Bool

4.8 Shorthands

Enumerations, tuples, and unions provide compact, readabl e representa-
tions for common kinds of theories. They are syntactic shorthands for
thingsthat could be writtenin LSL without them.

ENUMERATIONS

The enumeration shorthand defines a finite ordered set of distinct
constants and an operator that enumerates them. For example,

Tenmp enuneration of cold, warm hot

isequivaent toincluding atrait with the body appearing in Figure 4.9.

TUPLES

The tuple shorthand is used to introduce fixed-length tuples, similar to
records in many programming languages. For example,

Ctuple of hd: E, tl: S

is equivalent to including a trait with the body appearing in Figure 4.10.
Each field name (e.g., hd) isincorporated in two distinct operators (e.g.,
_.hd: C-Eandset _hd: C, E-C).
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i nt roduces
., _]: EE sS—=C
_.hdZC—>E
__.tl: C—>'S

set_hd: C, E —- C

set_ tl: C, S — C
asserts

C generated by [__, _ ]

C partitioned by .hd, .t
vV e,el: E s,s1l: S
([e, s]).hd == g;
([e, s]).tl ==s;
set_hd([e, s], el) ==[el, s];
set_tl([e, s], sl) ==[e, sl]

FIGURE 4.10. Expansion of atuple shorthand

S tag enuneration of atom cel
i ntroduces
atom A — S

cell: C— S
__.atom S — A
__.cell: s —=C
tag: S — S tag
asserts
S generated by atom cel

S partitioned by .atom .cell, tag
vVa A c: C
atom(a) . atom== a;

cell(c).cell ==c;
tag(atom(a)) == atom
tag(cell(c)) == cel

FIGURE 4.11. Expansion of a union shorthand

UNIONS

The union shorthand corresponds to the tagged unions found in many
programming languages. For example,

S union of atom A, cell: C

is equivalent to including a trait with the body appearing in Figure 4.11.
Each field name (e.g., at on) is incorporated in three distinct operators
(eg.,atom —»S_tag,atom A—S, and __. at om S—A).
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InsertGenerated (E, C: trait
i ntroduces
empty: — C
insert: EfL C — C
asserts
C generated by enpty, insert

FIGURE 4.12. InsertGenerated.Isl

4.9 Further examples

We have now covered all thefacilities of the Larch Shared Language. The
next series of examplesillustratestheir coordinated use.

The trait | nsert Gener at ed, Figure 4.12, abstracts the common
properties of data structures that contain elements, such as sets, bags,
gueues, stacks, and strings. | nsert Gener at ed is useful both as a
starting point for specifications of many different data structures and as an
assumption when defining generic operators over such data structures.

Thegenerated by clauseinl nsert Gener at ed assertsthat each value
of sort C can be constructed from enpty by repeated applications of
i nsert (i.e,enpty andi nsert constituteacompleteset of generators
for C). This assertion is carried along when | nsert Gener at ed is
included in or assumed by other traits, even if those traits introduce
additional operators with range C.

The trait Cont ai ner, Figure 4.13, includes | nser t Gener at ed.
It constrains the operators introduced in | nsert Gener at ed, as wdll
as the operatorsit introduces. The axioms defining count guarantee that
insertionsarenot lost. Thisimplies, for example, that setsdo not satisfy this
definition of container. The last axiom asserts that, when applied to a non-
empty container, t ai | removes an element equal to the element returned
by head. Notice that these axioms do not imply the stronger property
-i SEnpty(c) = insert(head(c), tail(c)) = c.

The converts clause adds checkabl e redundancy to the specification. The
implied formulafollows from the last axiom and the two axioms defining
count . If head were to return something that was not in ¢, inserting it
back in would change the count for that value.

PQueue, Figure 4.14, specidizes Cont ai ner by constraining head
and tail in a way that is consistent with the last two axioms of
Cont ai ner . The first implication states a fact that may be helpful in
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Container (E, Q: trait
i ncl udes I nsert Generated, |nteger
i ntroduces
i sEnpty: C — Bool
count: E, C — Int

€ _: E C — Boadl

head: C — E

tail: C —- C
asserts

C partitioned by isEnpty, head, tail
Ve el: E c: C
i SEnpty(enpty);
—isEnpty(insert(e, c));
count (e, enpty) == 0;
count(e, insert(el, c)) ==
count(e, c) + (if e = el then 1 else 0);
e € ¢c ==count(e, c) > 0;
—isEnpty(c) =
count (e, insert(head(c), tail(c)))
= count(e, c¢)
implies
vc: C
—isEmpty(c) = count(head(c), c) > O;
converts i sEnpty, count, €

FIGURE 4.13. Container.lsl
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PQueue (E, Q: trait
assunmes Total Order (E)
i ncl udes Container(Q for O
asserts vV e, el: E q Q
head(i nsert(e, q)) ==
if isEmpty(q) Vv e > head(Qq)
then e el se head(q);
tail(insert(e, q)) ==
if isEmpty(q) VvV e > head(q)
then g else insert(e, tail(q))

implies
Vg Q e E
e € g => (e < head(q))
converts head, tail, isEnmpty, count, €

exenpting head(enpty), tail (enpty)

FIGURE 4.14. PQueue.lsl

53
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reasoning about PQueue and may hel preaderssolidify their understanding
of thetrait. The second implication statesthat the trait fully defineshead
andtail (except when applied to enpty), i SEnpty, count, and €.
The axioms that convert i SEnpty, count, and € are inherited from
Cont ai ner.

Unlikethe preceding traitsin thissection, PQueue specifies acomplete
abstract type constructor. In such a trait there is a distinguished sort,
sometimes called the type of interest [40] or data sort. An abstract type's
operators can be categorized as generators, observers, and extensions
(sometimes in more than one way). A set of generators produces all the
valuesof thedistinguishedsort. The extensionsare the remaining operators
whose range is the distinguished sort. The observers are the operators
whose domain includes the distinguished sort and whose range is some
other sort. An abstract type specification usually has axioms sufficient to
convert the observers and extensions. The distinguished sort is usually
partitioned by at |east one subset of the observers and extensions.

In the example of PQueue, Q is the distinguished sort, enpty and
i nsert form agenerator set, t ai | isan extension, head, i SEnpty,
count and € arethe observers, and head, tai | ,andi sEnpty forma
partitioning set.

A good heuristic for writing enough equations to adequately define an
abstract type is to write an equation defining the result of applying each
observer or extension to each generator. For PQueue, this rule suggests
writing equations for

1) isEnpty(enpty)

2) count(e, enpty)

3) e € enpty

4) head(enpty)

5) tail (enpty)

6) isEnmpty(insert(e, Qq))
7) count(e, insert(el, q))
8) e € insert(el, Q)

9) head(insert(e, q))
10) tail(insert(e, Qq))

PQueue containsexplicit equationsfor only thelast two of these; it inherits
equations for five more from Cont ai ner . The third and eighth termsin
the list do not appear explicitly in equations. Instead, € is defined by
relating it directly to count . The remaining two terms, head( enpt y)
andtai |l (enpty), areexplicitly exempted.
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Pai rwi seExtension (o, ®, E, O: trait
assunes Container(E, C

i nt roduces
o 1 E E—E
® _ . C C—-2C

asserts Vv el, e2: E, cl1, c2: C
enpty © enpty == enpty;
(-isEnpty(cl) A -isEnpty(c2))
= ¢l ® c2 = insert(head(cl) o head(c2),
tail(cl) ® tail(c2));
i mplies
converts ©®
exenpting Vv e: E, c: C
enpty ® insert(e, c),
insert(e, c) ® enpty

Pai rwi seSun{C): trait
assunes Container(Int, CQ
i ncl udes I nteger, Pairw seExtension(+, @&, Int, C
i mplies Associative(®d, O,
Conmut ative(® for o, Cfor T, C for Range)

FIGURE 4.15. Specification of generic operators

The traits Pai r wi seExt ensi on and Pai rwi seSum Figure 4.15,
specify generic operatorsthat can be used with variouskinds of containers.

Pai r wi seExt ensi on isagenerictrait that may beinstantiated using
a variety of data structures and operators. Given a container sort and a
binary operator, o, on elements, it defines a new binary operator, ©, on
containers. The result of applying ¢ to apair of containersis a container
whose elements are the results of applying o to corresponding pairs of
their elements. The exenpt i ng clause indicates that, although the result
of applying ©® to containers of unequal size is not specified, thisis not an
oversight.

The trait Pai rwi seSum specializes Pai rwi seExt ensi on by
binding o to an operator, +, whose definition is to be taken from the trait
I nt eger (page 163). Thevalidity of theimplicationsthat ¢ isassociative
and commutative stems from the replacement of o by +, whose axioms
in the trait | nt eger imply its associativity and commutativity. These
implications can be proved by induction over enpty andi nsert .
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Chapter 7
Using LP to Debug L SL Specifications

In earlier chapters, we have attempted to show how Larch can be used to
write preci se specifications. However, it is not sufficient for specifications
to be precise; they should aso accurately reflect the specifier’s intentions.
Mistakes from many sources will crop up in specifications. Any practical
methodol ogy that relies on specifications must provide meansfor detecting
and correcting their flaws, in short, for debugging them.

Parsing and type-checking are useful and easy to do, but don't go
far enough. Unfortunately, we cannot prove the “correctness’ of a
specification, because there is no absolute standard against which to judge
correctness. So we seek methods and tool s that will be hel pful in detecting
and localizing the kinds of errors that we commonly observe.

Since the Larch style of specification emphasizes brevity and clarity
rather than executahility, it is usually not possible to evaluate Larch
specifications by testing. Instead, LSL allows specifiers to state precise
claims about specifications. If these claims are true, they can be verified
statically. Such a verification won't guarantee that a specification meets a
specifier’sintent, but it isa powerful debugging technique. Oncethe flaws
verification reveals are removed, there should be fewer doubts about the
specification’s accuracy.

Theclaimsalowed in LSL specifications are undecidable in the general
case. Hence we can’t hope to build a tool that will automatically certify
an arbitrary specification. However, tools can assist specifiersin checking
claims during debugging.

This chapter describes how two such tools fit into our work on LSL.
Our principa debugging tool is LP [30], the Larch proof assistant.! LP's
design and development have been motivated primarily by our work on
LSL, but it also has other uses (cf. Appendix E). Because of these other
uses, and because we aso intend to use LP to anayze Larch interface
specifications, we havetried not to make LP too L SL-specific. Instead, we
have chosen to build and use asecond tool, the LSL Checker, asafront-end
to LP. The LSL Checker checks the syntax and type consistency of LSL

Theversion of L P describedin this book is that releasedin November, 1991. A version
with increased logical power is currently under development.
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specifications, then generates L P proof obligationsfrom their claims.

Sections 7.1 and 7.2 describe the checkable claims that can be madein
LSL specifications. Sections 7.3 through 7.6 describe how LP is used to
check these claims. Section 7.7 contains an extended example.

7.1 Semantic checksin LSL

We begin by reviewing the kinds of semantic claims that can be madein
LSL. As mentioned in Chapter 4, semantic claims about LSL traits fall
into three categories:

e consistency (that a specification does not contradict itself),

¢ theory containment (that aspecification hasintended consequences),
and

¢ relative completeness (that a set of operatorsis adequately defined).

Consistency is an assertion about what is not in the theory of trait, and
is therefore not expressible in LSL. Instead, it is implicitly required of
all traits: no legal LSL trait’'s theory contains the inconsi stent equation
true == fal se.Clamsintheothertwo categories are stated explicitly
using the LSL constructsi npl i es and assunes.

CHECKING IMPLICATIONS

An implies clause adds nothing to the theory of atrait. Instead, it makes a
claim about theory containment. It enabl es specifierstoincludeinformation
they believe to be redundant, either as a check on their understanding or
to cal attention to something that a reader might otherwise miss. The
redundant information is of two kinds: statements like those in asserts
clauses, which are claimed to be in the theory of the trait, and converts
clauses, which describe the extent to which a specification isclaimed to be
complete.

Theinitial design of LSL incorporated abuilt-in notion of compl eteness.
We quickly concluded, however, that requirements of completeness are
better |eft to the specifier’s discretion. It useful to check certain aspects
of completeness |ong before a specification isfinished. Furthermore, most
finished specifications are left intentionally incomplete in places. LSL
allows specifiers to make checkable claims about how complete they
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Li near Contai ner(E, C: trait
i ntroduces
empty: — C
insert: Ef C —» C
head: C — E
tail: C - C
i sEmpty: C — Boo

€ __: E C — Boo
asserts
C generated by enpty, insert
C partitioned by head, tail, isEnpty

vec: C e el E
head(insert (e, enpty)) == e;
tail (insert(e, enpty)) == enpty;

i SEnpty(enpty);

—i sEnpty(insert(e, c));

-(e € enpty);

e € insert(el, c) == e =el v e € c
i mplies

vec: C e E
i sSEnpty(c) = —(e € c)
converts €, isEmpty

FIGURE 7.1. Sample LSL specification

intend specificationsto be. These claims are usually most valuable during
specification maintenance. Specifiers don’t usually make erroneous claims
about completeness when first writing a specification. On the other hand,
when editing aspecification, they often del ete or change something without
realizing itsimpact on compl eteness.

The first part of the implies clause of the trait Li near Cont ai ner ,2
Figure 7.1, asserts that if i SEnpt y of acontainer istrue, no eement is
in that container. By checking that this assertion follows from the axioms
of thetrait, we can gain confidence that the axioms describing i SEnpt y
and € are appropriate.

2This trait is similar to the trait Cont ai ner that appears in Figure 4.13 and in
Appendix A: its theory is contained in that of Cont ai ner . Many of the traits in this
chapter are adapted from traits appearing in Appendix A. However, in order to better
illustrate how traits are checked, we have changed them in small ways. In particular, we
have often added implications and suppressed details that do not affect the points we wish
to make.
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PQE Q: trait
assunes TotOrd(E)
i ncl udes Linear Container(E, Q
asserts Vv q: Q e: E
head(insert(e, q)) ==
if isEnmpty(qg) then e
else if e < head(qg) then e
el se head(q);
tail (insert(e, q)) ==

if isEnpty(qg) then empty
else if e <« head(q) then ¢
el se insert(e, tail(Qq))
i mplies

Vg Q e E
e € g => —-(e < head(q))

converts i sEnpty, head, tail, €
exenpting head(enpty), tail (enpty)

FIGURE 7.2. LSL specification for a priority queue

The converts clause in Li near Cont ai ner claims that the trait
contains enough axioms to define € and i SEnpt y; that is, given any
fixed interpretations for the other operators, al interpretations of € and
i SEnpt y that satisfy thetrait’s axioms are the same.

The converts clause in PQ Figure 7.2, involves more subtle check-
ing. The exempting clause indicates that the lack of equations for
head(enmpty) andtail (enpty) isintentiona: the operators head
andt ai | areonly claimedto bedefined uniquely relativetointerpretations
for thetermshead(enpty) andtai | (enpty) . Section 7.5 describes
the checking entailed by the converts clause in more detail.

CHECKING ASSUMPTIONS

There are two mechanisms for combining LSL specifications. Both are
defined as operations on the texts of specifications. For both, the theory of
acombined specificationisaxiomatized by the union of the axiomatizations
for theindividual specifications; each operator isconstrained by theaxioms
of al traitsin which it appears. Trait inclusion and trait assumption differ
only in the checking they entail.

Thetrait PQ, Figure 7.2, which includes Li near Cont ai ner, further
constrainstheinterpretationsof head, t ai | , andi nsert . The assumes
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TotOrd(E): trait

i ntroduces
< __ . E, E — Bool
> . E, E — Bool
asserts forall x, y, z: E
(0 x < x);
(X <y Ay < 2z) =X < z
X <y VX=Y VYy <X
X >y ==y < X
i mplies
TotOd(E, > for <, < for >)
vV x, y: E

(X <y Ay < X)

FIGURE 7.3. LSL specification for total orders

clause of PQindicatesthat PQ's theory also containsthe theory of thetrait
Tot Or d, Figure 7.3.

The use of assunes rather than i ncl udes entals additiona
checking. Theassumption must bedischarged whenever PQisincorporated
into another trait. For example, checking the trait

Nureri cPQ trait
i ncl udes PQ(N, NumericQ, Numeric

involves checking that the assertionsin thetrait Tot O d(N) areimplied
by those in the traits PQ Li near Cont ai ner, and Numeri ¢ taken
together. Sometimes these assumptionscan be syntactically discharged for
example, if Nuner i ¢ explicitly includes Tot Or d(N) .

Figure 7.4 summarizes the checking that LSL requires for the sample
traits introduced in this section.

7.2 Proof obligations for LSL specifications

An LSL specification generally consists of a hierarchy of traits, some of
whichinclude, assume, or imply others. We usethe LSL Checker to syntax-
check and type-check the traits, to extract the proof obligations required
to check the semantic claimsin the traits, and to discharge some of these
proof obligations. This section describes how the LSL Checker extracts
the proof obligations. The next several sections describe how weuseLPto
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Nuneri cPQ

Check consistency of Nuner i cPQ.

Check assumption of Tot O d( N) by PQ

Use the assertions of all traits except for those of Tot Or d.

PQ Nuneri c
Check consistency of PQ Check . ..
Check implications Use...

Use the assertions of PQand the theories of
Li near Cont ai ner and Tot Or d.

Li near Cont ai ner TotOrd

Check consistency. Check consistency.
Check implications. Check implications.
Use local assertions. Useloca assertions.

FIGURE 7.4. Summary of required checking
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discharge those proof obligations that the LSL Checker cannot discharge
syntacticaly.

To extract proof obligations, the LSL Checker computes the following
sets of propositions (equations, generated by clauses, and partitioned by
clauses) for each trait T in atrait hierarchy.

e Theassertionsof T consist of the propositionsin the asserts clauses
of T and of al traits (transitively) included in T.

e The assumptions of T consist of the assertions of all traits
(transitively) assumed by T.

e Theaxiomsof T consist of itsassertions and its assumptions.

¢ Theimmediate consequences of T consist of the propositionsin T's
implies clause and the axioms of all traitsthat T explicitly implies.

The LSL Checker places the axioms for each trait T in a file
named T_Axi ons. | p. It dso generates a file named T_Checks. | p,
which contains the proof obligations associated with showing that T's
axioms entail its immediate consequences, its converts clauses, and the
assumptionsof each trait explicitly included in or assumed by T. The LSL
Checker does not generate an explicit proof obligationfor showingthat T's
axioms are consistent. In fact, such a proof obligationisnot expressiblein
LP Like LSL, LP contains no mechanisms for making statements about
what isnot in atheory.

TheL SL Checker can discharge some proof obligationssyntactically, for
example, because a proposition to be proved occurs textually among the
axioms available for use in the proof. When it cannot do this, it places
commands in T_Checks. | p that initiate a proof of the proposition.
Sometimes LP will be able to carry out the required proof automatically;
sometimesit will require user assistance.

Consider thetrait Nurrer i ¢PQ, whichincludesboth PQand Nuneri c.
Because PQassumes Tot Or d, it is necessary to check that the axioms of
Nurrer i cPQimply thoseof Tot Or d. If Nuner i ¢ explicitly includes or
impliesTot O d, or if theassertionsof Tot O d are among the axioms of
Nurrer i c, then the LSL Checker can discharge the assumption required
for including PQin Nuner i cPQ. On the other hand, if Nuner i ¢ simply
asserts some properties of the binary relations < and >, the LSL Checker
will formulate LP commands that initiate a proof of the conjecture that
these properties imply the assertions of Tot O d.
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LSL Traits
To. Isl, ..., T,. I sl

'
| TheLSL Checker | — Diagnostics

.

T; Axi onms. | p, T, Theorens. | p
T; Checks. I p

.
User — | LP |

t
Diagnostics

FIGURE 7.5. Using the LSL checker and LP to check LSL traits

LEMMAS FOR PROOF OBLIGATIONS

When checking the semantic claimsin a hierarchy of traits, it isgenerally
desirable to use lemmas that have been (or can be) shown separately
to follow from the axioms of those traits. The theorems of a trait
T consist of its axioms supplemented by all appropriately renamed
propositions (transitively) implied by T or by some trait below T in the
inclusion/assumption hierarchy.® The LSL Checker places the theorems
for each trait T in afile named T_Theor ens. | p, and refers to this file
instead of T_Axi ons. | p in T_Checks. | p when it is sound to do so.
In general, soundnessis guaranteed as long as there is a partia order for
checking proof obligationsin which each theorem is (or can be) checked
beforeit is used as alemmato discharge another proof obligation.

By providing a small set of axiomsfor atrait T, a specifier can make it
easier to check traitsthat imply T or that include atrait that assumes T. By
providing alarge set of implicationsfor T, a specifier can makeit easier to
reason about T and, in particular, to check traitsthat include or assume T,
without at the same time making it harder to check traits that imply T or
that include atrait that assumes T.

Figure 7.5 shows how the LSL Checker and LP are used together to
check LSL traits.

3Some generated by and partitioned by clauseswill not qualify as theorems of T when
arenaming identifies the generated or partitioned sort with some other sort.
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decl are sorts
C E

decl are operators
head: C — E
insert: L C — C
i sEmpty: C — Boo
tail: C - C
empty: — C
€. E;, C — Boo

decl are vari abl es

e: E
c: C
el: E

FIGURE 7.6. LP declarations produced from Li near Cont ai ner

7.3 Trandlating LSL traitsinto LP

LP is a proof assistant for a subset of multisorted first-order logic with
equality. The basisfor proofsin LPiscalled alogical system. This section
contains an overview of the components of a logical system in LP and
discusses their relation to the components of an LSL trait. The following
sections discuss how these components are used by L P to discharge proof
obligations associated with LSL traits.

A logical system in LP consists of a signature (given by declarations)
plus equations, rewrite rules, operator theories, induction rules, and
deduction rules. Logica systems are closely related to LSL theories, but
are handled somewhat differently. Axiomsin LP have operationa aswell
as semantic content, and they can be presented to LP incrementally, rather
than all at once.

DECLARATIONS

Sorts, operators, and variables play the samerolesin LPasthey doinLSL.
AsinLSL, operators and variables must be declared, and operators can be
overloaded. There are afew minor differences. sorts must be declared in
LP, and LP doesn’t provide scoping for variables.

The LSL Checker produces the declarations in Figure 7.6 from the
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introduces and V clausesin thetrait Li near Cont ai ner.

EQUATIONS AND REWRITE RULES

Equationsplay aprominentrolein LP. Someof L P’sinference mechanisms
work directly with equations. Most, however, require that equations be
oriented into rewrite rules, which LP uses to reduce terms to normal
forms. It is usualy essential that the rewriting relation be terminating,
that is, no term can be rewritten infinitely many times. LP provides
several mechanisms that automatically orient many sets of equations into
terminating rewriting systems. For example, in response to the commands
set name group
declare sort G
declare variables x, y, z: G
decl are operators e: — G i: G— G *: G G — G
assert
(x*y)*z == x*(y*z)
e == i(x)*x
erx == x

which enter the usual axiomsfor groups, LP produces the rewrite rules
group.1: (x *vy) *z — x * (y * 2z)
group.2: i(x) * x —» e
group.3: e * X — X

LP automatically reverses the second equation to prevent nonterminating
rewriting sequences such as

e —-i(e) *e —i(e) *i(e) *e — ...

A system’s rewriting theory consists of the propositions that can be
proved by reduction to normal form. Thistheory is aways a subset of its
equational theory, which consists of the propositions that can be proved
from its equations and from its rewrite rules considered as equations.
A system’s rewriting theory does not usually include all of its equationa
theory. The proof mechanismsdiscussed in Section 7.4 help to compensate
for this incompleteness. In the case of group theory, for example, the

equation e == i (e) follows logicaly from the axioms, but is not in
the rewriting theory of the three rewrite rules: it isirreducible, but not an
identity.

LP provides built-in rewrite rules to simplify predicates involving the
connectives—, A, V, =, and <, theequality operator =, and theconditional
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operator i f. These rewrite rules are sufficient to prove many identities
involving these operators, but not al. Unfortunately, the sets of rewrite
rules that are known to be complete for propositiona calculus require
exponentia time and space. Furthermore, they tend to expand, rather
than simplify, propositions that do not reduce to identities. These are
serious drawbackswhen we are debugging specifications, becausewe often
attempt to prove conjectures that are not true. So none of the compl ete sets
of rewrite rulesis built into LP. Instead, LP provides proof mechanisms
that can be used to overcomeincompletenessin arewriting system. It also
allows usersto add any of the compl ete sets they choose to use.

LP treats the equationstrue == falseandx =t == fal se,
where t is a term not containing the variable x, as inconsistent. (The
second equation rules out empty sorts.) Inconsistencies can be used to
establish subgoals in proofs by cases and contradiction. If they arise in
other situations, they indicate that the axioms in the logical system are
inconsistent.

OPERATOR THEORIES

LP provides specia mechanisms for handling some equations that cannot
be oriented into terminating rewrite rules. LP recognizes two operator
theories: the commutative theory and the associative-commutative (ac)
theory. For example, the command assert ac + says that + is
associative and commutative. Logically, this assertion is an abbreviation
for two equations:

x +(y +2z) == (x+y) +12z

X +y=Yy + X

Operationally, it causes LP to match and unify terms modul o associativity
and commutativity. This increases the number of theories that LP can
reason about. It also reduces the number of axioms required to describe
various theories, the number of reductions necessary to derive identities,
and the need for certain kinds of user interaction, such as case analysis. Its
main drawback isthat it can be much slower than ordinary rewriting.*

4A secondary drawback is that ordering equations that contain commutative and ac
operators into terminating sets of rewrite rulesis, in principle, more difficult. In practice,
however, thisis not a problem.
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INDUCTION RULES

LP uses induction rules to generate subgoasin proofs by induction. The
syntax for induction rulesisthesamein LPasin LSL.5
Users can specify multipleinduction rules for a single sort and can use
the appropriate rule when attempting to prove an equation by induction.
For example, assuming appropriate declarations, the L P commands
set name setlnductionl
assert S generated by enpty, insert

set nane setlnduction2
assert S generated by enpty, singleton, U

alow
prove x C x by induction using setlnduction2

In LSL, the axioms of atrait typically have only one generated by for a
sort. It is often useful, however, to put othersin the trait’s implications.

DEDUCTION RULES

L P subsumes the logical power of the partitioned by construct of LSL in
deduction rules, which LP uses to deduce equations from other equations
and rewrite rules. Like other formulas in LP, deduction rules may be
asserted as axioms or proved as theorems. While the partitioned by clause
in the trait Li near Cont ai ner can be expressed by an equation, in
genera a partitioned by clause is equivaent to a universal-existential
axiom, which can only be expressed asadeductionrulein LP. For example,
the LP commands
assert S partitioned by ¢

assert
when (Ve) e € x==e €y
yield x ==

are equivalent and define a deduction rule equivalent to the axiom of set
extensionality

(Vz,y:S)[(Ve: E)e€cz o e€y)=>z =y

ThisdeductionruleenablesL Pto deduce equationssuchasx == x U X
automatically from equationssuchase € x == e € (X U X).

5The semantics of induction is somewhat stronger in LSL than in LP, since arbitrary
first-order formulas cannot be written in this version of LP.
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Deduction rules can have multiple hypotheses and/or multiple conclu-
sions. For example, the transitivity of < can be formulated as a deduction
rule with two hypotheses:

when i < j, j < kyieldi < k
The built-in A-splitting law is a deduction rule with two conclusions:
when p A q yield p, ¢

Such deductionrules serveto improvethe performance of LPand to reduce
the need for user interaction.

LP automatically applies deduction rules to equations and rewrite rules
whenever they are normalized. The sample proof in Section 7.5 illustrates
the logical power of deduction rules, as well as the benefits of applying
them automatically to the case and induction hypotheses in a proof.

7.4 Proof mechanismsin LP

This section providesabrief overview of the proof mechanismsin LP. The
next two sections discusshow they are used to check LSL semantic claims.

L P provides mechanisms for proving theorems using both forward and
backward inference. Forward inferences produce consequences from a
logical system; backward inferences produce subgoals whose proof will
suffice to establish a conjecture. There are four methods of forward
inferencein LP.

1. Automatic normalization produces new consequences when a
rewriterule isadded to a system. LP keeps rewrite rules, equations,
and deduction rules in normal form.

If an equation or rewriterule normalizesto anidentity, iti sdiscarded,
becauseitislogically and operationally superfluous. If al hypotheses
of a deduction rule normalize to identities, the deduction rule is
replaced by the equations in its conclusions. If all conclusions
of a deduction rule normalize to identities, the deduction rule is
discarded.

Users can “immunize” equations, rewrite rules, and deduction rules
to protect them from automatic normalization, both to enhance the
performance of LP and to preserve a particular form for use in a
proof. Users can aso “deactivate” rewrite rules and deduction rules
to prevent them from being applied automatically.
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2. Automatic application of deduction rules produces new conse-
guences after equationsand rewriterulesin asystem are normalized.
Deduction rules can also be applied by explicit command, for
example, to immune equations.

3. The computation of critical-pair equations and the Knuth-Bendix
completion procedure [58, 72] produce equational consequences
(such asi (e) == e) from incomplete rewriting systems (such
as the three rewrite rules for groups, page 130). We often compute
critical-pair equationsfrom sel ected sets of rewrite rules. Sometimes
we run the compl etion procedure to find the last few consequences
to finish off a proof or, as discussed in Section 7.7, to look for
inconsi stencies. However, werarely completeour rewriting systems,
becauseacompleteset of rewriteruleswith agiven equational theory
may not exist, may betoo expensiveto obtain, or may lead to normal
formsthat are hard to read [28].

4. Explicit instantiation of variables in equations, rewrite rules, and
deduction rules also produces consegquences. For example, in a
system that contains the deduction rule

when (Ve) e e x==e €yyield x ==y

and therewriterulee € (x Uy) — e € X V e € y,we
can instantiate y in the deduction rule by x U x to produce the
conclusonx == x U X.

There are seven methods of backward inference for proving theoremsin
LP. These methodsareinvoked by thepr ove and r esune commands. In
each method, L P generates a set of subgoalsto be proved, that is, lemmas
that together are sufficient to imply the conjecture. For some methods,
LP generates additional hypotheses that may be used to prove particular
subgoals.

1. Normalization rewrites conjectures. If a conjecture normalizes to
an identity, it is a theorem. Otherwise the normalized conjecture
becomes the subgoal to be proved.

2. Proofs by cases can further normalize a conjecture. The command
prove e by cases ti, ..., t,, wheetq, ..., t, ae
predicates, directs LP to prove an equation e by division into cases
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t1,...,t,(orintotwocases, t1and -t 1,if n = 1). Whenn > 1,
onesubgoal istoprovethat thecasesareexhaustive,i.e,t 1 v ...V
t .. In addition, for each case t ;, LP substitutes new constants for
the variables of t; inbotht,; and e to form t;’ and e;’ , which
it uses to creates the subgoa e;’ with the additiona hypothesis
t;7 — true. If an inconsistency results from adding the case
hypothesist ;" , that case isimpossible, and e;” is vacuously true.
Otherwise, thesubgoal e;” must be shownto follow from the axioms
supplemented by the case hypothesis.

Case analysishastwo primary uses. If the conjectureisatheorem, a
proof by cases may circumvent alack of completenessin the rewrite
rules. If the conjectureis not atheorem, an attempted proof by cases
may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

. Proofs by induction are based on the induction rules described in
Section 7.3. For example, a proof by induction of

i SEnpty(c) = —-(e € c)

from the axioms of Li near Cont ai ner involves two steps. The
basis step involves showing that

i SEnpty(enmpty) = —(e € enpty)

Thisfollows from the axioms by normalization. The induction step
involves picking a new constant cc, assuming

i sSEnpty(cc) = —(e € cc)
as an induction hypothesis, and showing that

i sSEmpty(insert(el, cc)) =
-(e € insert(el, cc))

This follows by normalization from the axioms supplemented by
thisinduction hypothesis.

. Proofs by contradiction provide an indirect method of proof. If an
inconsi stency follows from adding the negation of the conjectureto
LP'slogica system, then the conjecture is atheorem.
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5. Proofs of implications can be carried out using a simplified form of
proof by cases. The command prove t1 = t, by = directs
LP to prove the subgoa t »’ using the hypothesist ;" — true,
wheret ;" andt,’ areobtained asinaproof by cases. Thissuffices
because the implication is vacuoudy truewhent ;" isfase.

6. Proofsof conditionalscan also becarried out usingasimplifiedform
of proof by cases. The command

proveif(tl, to, t3) == {4 bylf
directs LP to provethesubgoal t ,” == t ' using the hypothesis
t1 , and to prove the subgoa t 37 == t,4 using the hypothesis
-ty ,wheret{ ,...,t4 areobtained asinaproof by cases.

7. Proofs of conjunctions provide a way to reduce the expense of
rewriting modulo the associativity and commutativity of A. The
commandprovet; A ...A t, by A directsLPto proveeach
oftq,...,t, asaseparate subgoal.

LP allows users to specify which methods of backward inference are
applied automatically and in what order. This is done by using the set
pr oof - met hods command. For example, the LP command

set proof-nethods if, =, normalization

tells LP that whenever it is given a conjecture to prove, it should
automaticaly try to apply these three methods, in the given order.

L P also provides automatic methods of backward inference for proving
induction and deduction rules. In each method, LP generates a set of
subgoals to be proved, as well as additional hypotheses that may be used
to prove particular subgoals. (See the next section for examples.)

Proofs of interesting conjectures hardly ever succeed on the first try.
Sometimes the conjecture is wrong. Sometimes the formalization is
incorrect or incomplete. Sometimes the proof strategy is flawed or not
detailed enough. When an attempted proof fails, we use a variety of LP
facilities (eg., case analysis) to try to understand the problem. Because
many proof attempts fail, LP is designed to fail relatively quickly and
to provide useful information when it does. It is not designed to find
difficult proofs automatically. Unlike the Boyer-Moore prover [8], it does
not perform heuristic searches for a proof. Unlike LCF [71], it does not
allow users to define complicated search tactics. Strategic decisions, such
as when to try induction, must be supplied as explicit LP commands.
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decl are sorts
E

decl are operators
<: E, E — Bool
>: E, E — Bool

decl are vari abl es

Xx: E
y: E
z: E

set nane TotOrd
assert

(X < X)

(X <y ANy <1z) =x<1z
X <Yy VX=Yy Vy<X
X >y == < X

FIGURE 7.7. Tot Or d_Axi ons. | p

On the other hand, LP is more than a “proof checker,” since it does not
require proofs to be described in minute detail. In many respects, LP is
best described as a “ proof debugger.”

7.5 Checking theory containment

The proof obligations triggered by implies and assumes clauses in an
LSL trait require us to check theory containment, that is to check that
claims follow from axioms. This section discusses how the LSL Checker
formulates the proof obligationsfor theory containment for LP, aswell as
how we use LP to discharge these obligations. The next section discusses
checking consistency.

PROVING AN EQUATION

The proof obligation for an equation is easy to formulate. Consider, for
example, the proof obligations that must be discharged to check the trait
Tot Ord shown in Figure 7.3. Figure 7.7 displays the LP commands
that the LSL Checker extracts from this trait in order to axiomatize
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execut e Tot Ord_Axi ons
set nane Tot OrdTheorem
% Prove inplication of TotOrd(E, > for <, < for >)
prove —(X > X)
ged
prove (X >y A Yy > 2) => X > Z
ged
prove X >y V X =Y VY > X
ged
prove X <y ==Yy > X
ged
% Prove inplied equation
prove —=(Xx <y A Yy < X)
ged

FIGURE 7.8. Tot Or d_Checks. | p

its theory, and Figure 7.8 displays the LP commands that the LSL
Checker extracts from thistrait in order to discharge its proof obligations.
The execut e command obtains the axioms for Tot O d from the file
Tot Or d_Axi ons. | p. Thepr ove commands initiate proofs of thefive
immediate consegquences of Tot Or d.

LP can discharge all proof obligations except the first without user
assistance. The user is aerted to the need to supply assistance in this
proof by a diagnostic (“Proof suspended”) printed in response to the ged
command. At this point, the user can complete the proof by entering the
conpl et e command or the command

critical-pairs TotOrd with TotOrd

Proofs of equationsrequire varying amountsof assistance. For example,
when checking that Li near Cont ai ner implies

i SEnpty(c) = —(e € c)

the singleLP command r esune by i nduct i on sufficesto finish the
proof.
When checking that PQ, Figure 7.2, implies

e € q=> —-(e < head(q))

more guidance is required. This proof proceeds by induction on q. LP
proves the basis subgoal without assistance. For the induction subgoal, LP
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introducesanew constant gc to takethe place of theuniversally-quantified
variable g, adds

e € qc = —(e < head(qc))
as the induction hypothesis, and attemptsto prove

e € insert(el, qc) =
—-(e < head(insert(el, qc)))

which normalizesto
(el = e v e €qc) >
—-(e < (if isEnpty(gc) then el
else if el < head(qc) then el
el se head(qc)))

LP now automatically applies the = proof method, i.e, it assumes
the hypothesis of the implication, introducing new constantsec and elc
to take the place of the variables e and el, and attempts to prove the
conclusion of the implication from this hypothesis. At this point, further
guidanceisrequired. The command

resume by case i seEnpty(qc)

directs LP to divide the proof into two cases based on the predicate
in the first i f. In the first case, i SEnpty(qgc), the desired conclu-
sion normalizes to —-(ec < elc). The conpl et e command leads
LP to deduce —-(e € qc), using the implied equation in the trait
Li near Cont ai ner, which is available for use in the proof because
Li near Cont ai ner precedes PQ in the trait hierarchy. With this fact,
LPis able to finish the proof in the first case automatically. The second
case, ~i SEmpt y( gc), requires more user assistance.

Figure 7.9 shows the entire proof, as recorded and annotated by LP
in a script file. In addition to recording user input, LP has indented the
script to reveal the structure of the proof, and it has annotated the proof by
adding lines (beginning with <>) to indicate when it introduced subgoals
and lines (beginning with[ ] ) toindicate when each of these subgoalsand
the theorem itself were proved. Such an annotated proof providesthe user
with a means of regression testing after changing the axioms for atrait.
On request, when LP executes the annotated proof (using the new set of
axioms), it will halt execution and print an error messageif the annotations
do not match the execution. These checks help pinpoint the source of
a problem when changes in the axioms cause some step in the proof to
succeed with less user guidance than expected or to require more guidance.
Without the check, LP might, for example, apply atactic intended for a
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set proof-methods =, normalization
prove e € q = —-(e < head(qg)) by induction
<> 2 subgoal s for proof by induction on ‘q
<> 1 subgoal for proof of =
[l = subgoal
[] basis subgoal
<> 1 subgoal for proof of =
resume by case i seEnpty(qc)
<> 2 subgoal s for proof by cases
% Handl e case i sEnpty(qc)
conpl ete
[] case isEnpty(qc)
% Handl e case -i sEnpty(qc)
resume by case elc < head(qc)
<> 2 subgoal s for proof by cases
% Handl e case elc < head(qc)
resume by contradiction
<> 1 subgoal for proof by contradiction
conpl ete
[1 contradiction subgoa
[] case elc < head(qc)
% Handl e case —(elc < head(qc))
resume by contradiction
<> 1 subgoal for proof by contradiction
conpl ete
[1 contradiction subgoa
[] case —(elc < head(qc))
[] case —(isEmpty(qc))
[] = subgoal
[1 induction subgoa

[ conjecture
ged

FIGURE 7.9. LP-annotated proof of PQimplication
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FinSet: trait
i ntroduces
enmpty: — S
insert: S, E— S
singleton: E — S

U _ .5 S-S

€ __: E S — Boo

__C 'S S — Boo
asserts

S generated by enpty, insert

S partitioned by €

forall s, s1l: S, e, el: E
singleton(e) == insert(enpty, e);
s U enpty ==s;

s Uinsert(sl, e) ==insert(s U sl, e);
-(e € enpty);
e € insert(s, el) == e € s v e = el;
empty C s;
insert(s, e) C sl ==s C sl A e ¢€sl

i mplies

S partitioned by C
S generated by enpty, singleton, U

FIGURE 7.10. An LSL trait for finite sets
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particular case in a proof to the wrong case, thereby causing the proof to
fail in mysterious ways. This checking helps prevent proofs from getting
“out of sync” with their author’s conception of how they should proceed.

PROVING A “PARTITIONED BY”

Proving a partitioned by clause amounts to proving the validity of the
associated deduction rulein LP. For example, the LSL Checker formulates
the proof obligations associated with the partitioned by in the implies

clause of Figure 7.10 using the LP commands

execut e Fi nSet AXxi ons
prove S partitioned by C

and LP tranglates the partitioned by into the deduction rule

when (V s3) s1 € s3 ==s2 C s3,
s3 C s1 ==s3 C s2
yield sl ==s2
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LPinitiatesaproof of thisdeduction ruleby introducing two new constants,
slc and s2c of sort S, assuming slc C s3 == s2¢c C s3 and
s3 C slc == s3 C s2c as additiona hypotheses, and attempting
to prove the subgoal s1c == s2c. LP cannot prove slc == s2c¢
directly, because the equation is irreducible. The user can guide LP by
typing conpl et e, which yieldsthelemmae € slc == e € sZ2c,
after which LP automatically finishes the proof by applying the deduction
rule associated with the assertion S partitioned by €.

PROVING A “GENERATED BY”

Proving a generated by clause involves proving that the set of elements
generated by the given operators contains al elements of the sort. For
example, the LSL Checker formulates the proof obligation associated with
the generated by in theimplies clause of Figure 7.10 as

execut e Fi nSet Axi ons
prove S generated by enpty, singleton, U

LP then introduces a new operator i sGener at ed: S—Bool , adds the
hypotheses

i sGener at ed(enpty)

i sGener at ed(si ngl eton(e))

(i sGenerated(sl) A isCenerated(s))
= isCenerated(sl U s)

and attemptsto prove the subgoal i sGener at ed( s) . User guidance is
required to complete the proof, for example, by entering the commands

resume by induction
conpl ete

directing LP to use the induction scheme obtained from the assertion
S generated by enpty, insert

and then to run the completion procedure to draw the necessary inferences
from the additional hypotheses.

PROVING A “CONVERTS’

Proving that atrait converts a set of operators involves showing that the
axioms of the trait define the operators in the set relative to the other
operators in the trait. For example, to show that Li near Cont ai ner
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execut e Li near Cont ai ner _Theor ens
decl are operators

i sEmpty’: C — Boo

€: E, C — Boo

assert C partitioned by head, tail, isEmpty’
assert

i SEnpty’ (enpty)

- (i sEmpty’ (insert(e, c)))

-(e € enpty)

e € insert(el, c) ==e =el v e € ¢

i SEnpty’' (c) = —-(e € «c)

set nane conver si onChecks

prove e € c == e € ¢
ged

prove i sEmpty(c) == isEmpty’' (c)
ged

FIGURE 7.11. Proof obligations for convert s in Li near Cont ai ner

converts i SEnpty and €, one must show that, given any interpre-
tations for enpty and i nsert, there are unique interpretations for
i sSEnpty and € that satisfy the axioms of Li near Cont ai ner.
Equivalently, we must show that thetheoriesof Li near Cont ai ner and
Li near Cont ai ner (i seEnpty’ for isEnpty, € for €) to-
gether imply the two equationsi sEnpty(c) == i sEnpty’ (c) and
ecc==¢ ¢ c

The LSL Checker formulates these proof obligations with the LP
commandsin Figure 7.11.% The only user guidance required to discharge
these proof obligationsis a command to proceed by induction.

The proof aobligation for the converts clause in PQis similar. Here we
must show that given any interpretationsfor enpt y andi nsert, aswell
as for the exempted terms head(enpty) and tail (enpty), there
are unique interpretationsfor head, t ai | , i sEnpty, and € that satisfy
the theory of PQ The proof obligationsfor this are shown in Figure 7.12.
Again, theonly user guidance needed to compl ete the proofs are commands
to proceed by induction.

5The figure’s last assertion comes from theimplies clausein Li near Cont ai ner .
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execut e PQ Theorens
% Decl arati ons, axions, and theorens for

% head, tail’, isEnmpty’, € occur here
set nane exenptions
assert

head(enpty) == head’ (enpty)
tail (empty) ==tail’ (enpty)

set nanme conver si onChecks

prove i sEnpty(q) == isEnmpty’' (Qq)
ged
prove head(q) == head (Qq)
ged
prove tail (g) ==tail’(Qq)
ged
prove e € g ==e € (¢
ged

FIGURE 7.12. Proof obligationsfor converts in PQ
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7.6 Checking consistency

Checks for theory containment fall into the typical pattern of use of
a theorem prover. The check for consistency is harder to formulate
because it involves nonconsequence rather than consequence. Techniques
for detecting when this check fails are more useful than techniques for
certifying that it succeeds.

A standard approach in logic to proving consistency involves inter-
preting the theory being checked in another theory whose consistency is
assumed (e.g., Peano arithmetic) or has been established previoudly [77].
Inthisapproach, user assistanceisrequired to definetheinterpretation. The
proof that the interpretation satisfies the axioms of the trait being checked
then becomes a problem of showing theory containment, for which LP
iswell suited. This approach is cumbersome and unattractive in practice.
M ore promising approaches are based on metatheoremsin first-order logic
that can be used for restricted classes of specifications. For example, any
extension by definitions (see [77]) of a consistent theory is consistent.

For equational traits (i.e., traits with purely equational axiomatizations,
of which there are relatively few), questions about consistency can be
translated into questions about critical pairs. In some cases, we can use
LP to answer these questions by running the completion procedure or by
computing critical pairs. If these actions generate an inconsistency, the
axioms are inconsistent; if they complete the axioms without generating
the equation t rue == f al se, then the trait is consistent. This proof
strategy will not usually succeed in proving consistency, because many
equationa theories cannot be completed at al, or cannot be completed in
an acceptable amount of time and space. Howevey, it has proved useful in
finding inconsi stenci es among equations.

We can use al of LP's forward inference mechanisms to search for
inconsistencies in a specification. The completion procedure searches for
inconsistencies automatically, and we can instantiate axioms by “focus
objects’ (in the sense of McAllester [64]) to provide the completion
procedure with a basis for its search. Even though unsuccessful searches
do not certify that aspecification isconsistent, they increase our confidence
in a specification, just astesting increases our confidence in a program.
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Coordi nate: trait
i ntroduces
origin: — Coord
- __: Coord, Coord — Coord
asserts V cd: Coord
cd - cd ==origin

Region(R): trait
assumes Coordi nate
i ntroduces
€ . Coord, R — Boo
%cd €r is trueif point cdis inregionr
% Not hi ng i s assumed about the contiguity
% or shape of regions

Di spl ayabl e(T): trait
assumes Coordi nate
i ncl udes Regi on(T)
i ntroduces
~[_]1: T, Coord — Color
%t[cd] represents appearance of object t
% at point cd

FIGURE 7.13. Prototype traits for windowing abstraction

7.7 Extended example

To illustrate our approach to checking specifications in a slightly more
realistic setting, we show how one might construct and check some traits
to be used in the specification of a simple windowing system [43]. These
are preliminary versions of traits that would likely be expanded as the
specifications (including the interface parts) were devel oped.

The first three traits, Figure 7.13, declare the signatures of some basic
operators.

The proof obligations associated with these traits are easily discharged.
When LP's completion procedure is run on Coor di nat e, it terminates
without generating any critical pairs. Since Coordi nate has no
generated by or partitioned by clauses, thisissufficient to guaranteethat itis
consistent. When checking theinclusion of Regi on by Di spl ayabl e,
Regi on’s assumptionof Coor di nat e isdischarged syntactically, using
Di spl ayabl e’s assumption of the same trait.
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W ndow(W: trait
assumes Coordi nate
i ncl udes Regi on, Displayabl e(W
Wtuple of cont, clip: R fore, back: Color, id: Wd
asserts v w W cd: Coord
cd e w==cd € wclip
wcd] ==if cd € wcont then wfore el se w. back
inplies converts _ [__], €:Coord, W-»Boo

FIGURE 7.14. W ndow. | sl

TheW ndowtrait, Figure 7.14, defines awindow as an object composed
of content and clipping regions, foreground and background colors, and a
window identifier. The operator € isqualified by asignatureinthelast line
of the trait because it is overloaded, and it is necessary to say which € is
converted.

There are three proof obligations associated with this trait. The
assumptions of Coor di nate in Regi on and Di spl ayabl e are
syntactically discharged using W ndow's assumption. The converts clause
isdischarged by LP without user assistance. The other proof obligationis
consistency. As discussed in the previous section, we use the completion
procedure to search for inconsistencies. Running it for a short time neither
uncovers an inconsistency nor proves consistency.

The Vi ew trait, Figure 7.15, defines a view as an object composed of
windows at locations. There are severa proof obligations associated with
this trait. Once again, the assumptions of W ndow and Di spl ayabl e
are discharged syntactically by the assumption in Vi ew. Once again,
using the completion procedure to search for inconsi stenci es uncovers no
problems. However, checking the converts clause does turn up a problem.
The conversion of i nWand both €’s is easily proved by induction over
objects of sort V. However, the inductive base case for __[__] does not
reduce at all, because enpt yV[ cd] isnot defined. This problem can be
solved either by defining enpt yV[ cd] or by adding

exenpting V cd: Coord enptyV]cd]

to the converts clause. We choose the latter because there is no obvious
definition for enpt yV[ cd] . With the added exemption, the inductive
proof of the conversion of __[__] goes through without further interaction.

When we attempt to provethefirst of theexplicit equationsin theimplies
clause of Vi ew, we run into difficulty. After automatically applying its
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View trait
assunes Coordi nate
i ncl udes Wndow, Displayabl e(V)

i ntroduces
emptyV: — V
addw V, Coord, W— V
€ __: W V — Bool
inW V, Wd, Coord — Bool
asserts

V generated by emptyV, addwW
vV cd, cdl: Coord, v: V, w, wi: W wid Wd
—(cd € enptyV);
cd € addWv, cdl, w) ==
(cd - cdl) e w Vv cd € v;
-(w € enptyV);
w € addWv, cdl, wl) ==w.id = wl.id v w € v;
addWv, cdl, w)[cd] ==
if (cd - cdl) e w
then wcd - cdl] else v[cd];
%Iln viewonly if in a w ndow, offset by origin
-inWenptyV, wid, cd);
i nWaddWv, cd, w), wid, cdl) ==
(wid =wd A (cd - cdl) € w
v inWv, wd, cdl)
i mplies
vV cd, cdl: Coord, v,vl: V, w W
% New wi ndow does not affect the appearance
% of parts of the view |lying outside the w ndow
-inWaddWv, cd, w), wid, cdl)
= addWv, cd, w)[cdl] = v[cdl];
% Appearance within newy added wi ndow is
% i ndependent of the viewto which it is added
i nWaddWv, cdl, w), wid, cd)
= addWv, cdl, w[cd] = addWvl, cdl, w)][cd]
converts inW ¢: Coord, V—Bool, €:W V—Bool,
_[_1:V, Coord—Col or

FIGURE 7.15. Preliminary version of Vi ew. | sl
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proof method for implications, L P reduces the conjecture to

if (cdlc - cdc) € we.clip
then if (cdlc - cdc) € wc.cont
then wc.fore el se we. back
el se vc[cdlc]
== vc[ cdic]

and reduces the assumed hypothesis of the implicationto
=((cdc - cdlc) € we.clip)

At this point, we ask ourselves why the hypothesisis not sufficient to
reduce the conjecture to an identity. The problem seems to be the order of
the operands of - . Thisleadsusto look carefully at the second equation for
i nWin trait Vi ew. There we discover that we have written cd - cdl
when we should have written cd1l - cd, or, to be consistent with the
form of the other equations, reversed the role of cd and cd1l in the left
side of the equation. After changing this axiom to

i nWaddWv, cdl, w), wid, cd) ==
(wid =wd A (cd - cdl) ¢ w
v inWv, wid, cd)

the proof of the first implication goes through without interaction.
The second conjecture, after LP applies its proof method for implica-
tions, reduces to
if (cdc - cdlc) € we.clip
then if (cdc - cdlc) € wc.cont
then wc.fore el se we. back
el se vc[cdc]

if (cd - cdlc) € we.clip
then if (cdc - cdlc) € wc.cont
then wc.fore el se we. back
el se v'[cdc]

We resume the proof by dividing it into two cases based on the predicate
in the outermost i f’s. When this predicate is true, the conjecture reduces
totr ue; whenit isfase, the conjecture reduces to

vc[cdc] == v’ [cdc]
Sincev’ isavariable and vc a new constant, we know that we are not

going to be able to reduce thisto t r ue. This does not necessarily mean
that the proof will fail, since we could be in an impossible case (i.e., the
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current hypotheses could |ead to a contradiction). However, examining the
current hypotheses,
inWvc, we.id, cdc) % Hypot hesi s of =
=((cdc - cdlc) € we.clip) % Case hypot hesi s

gives us no obvious reason to believe that a contradiction exists.

Thisleads ustowonder about thevalidity of the conjecturewearetrying
to prove, and to ask ourselves why we thought it was true when we added
it to thetrait. Our informal reasoning had been:

1. The hypothesisi nW addWv, cdl, w), w id, cd) of the
conjecture guarantees that coordinate cd isin window winthe view
addWv, cdl, w).

2. If wis added at the same placeinv’ asinv, cd must also bein
addWv’', cdl, w).

3. Furthermore cd - cd1 will be the same relative coordinate in w
inbothaddWv, cdl, w) andaddWv’', cdl, w).

4. Therefore the equation

addWv, cdl, w)[cd] ==
if (cd - cdl) e w
then W cd -cdl] else v[cd]

intrait Vi ew should guarantee the conclusion.

Thefirst step informalizing thisinformal argument isto attempt to prove
i nWaddwWv, cdl, w), wid, cd) = (cd - cdl) € w

as alemma. LP reduces the conclusion of thisimplication to
(cdc - cdlc) € we.clip

using the normalized implication hypothesis
(cdc - cdlc) € we.clip v inWvec, we.id, cdc)

Casing on the first disjunct of the hypothesis reduces the conjecture to
f al se under the same implication and case hypotheses as above.

We are thus stuck in the same place as in our attempted proof of the
origina conjecture. Thisleads us to question the validity of the first step
in our informal proof, and we discover a flaw there: when v contains a
window with the samei d asw, theimplicationis not sound. The problem
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isthat weimplicitly assumed the invariant that no view would contain two
windows with the samei d, and our specification does not guarantee this.
There are severa ways around this problem, among them:

1. Trait Vi ew could be changed so that addWchooses a unique i d
whenever awindow is added.

2. Trait Vi ew could be changed so that addWis the identity function
whenthei d of the window to be added is aready associated with a
window in the view.

3. The preservation of theinvariant could be left to the interface level.

We choose the third alternative and weaken the second implication of
trait Vi ewto:

vV cd, cdl: Coord, v, Vv': V, w W

% Appearance within a newy added wi ndow i s

% i ndependent of the viewto which it is added,

% provided that the windowid is not already

% present in the view

("(wev) A a(wevVv)

A inWaddWv, cdl, w), wid, cd))
= addWv, cdl, w)[cd] = addWvVv’', cdl, w)[cd]

which is proved with a small amount of user interaction after proving the
lemma
-(w e v) = ainWv, wid, cd)

by inductiononv.
Finally, we introduce a coordinate system.

CartesianView trait
i ncl udes Vi ew, Nat ur al
Coord tuple of x, y: N
asserts V cd, cdl: Coord
origin==1[0, 0];
cd - cdl ==[cd.x 6 cdl.x, cd.y © cdl.y]
i nplies converts origin, -

LP usesthefacts of thetrait Nat ur al (see Appendix A) to automatically
discharge the assumption of Coor di nat e that has been carried from
level to level. LP requires no assistance to complete the proof that the
coordinate operators are indeed converted.

Of course, for expository purposes, we have used an atificially
simplified example. We also deliberately seeded some errors for LP to
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find. However, most of the errors discussed above occurred unintentionally
as we wrote the example, and we did not notice them until we actually
attempted the mechanical proofs.

7.8 Perspective

The Larch Shared Language includes several facilities for introducing
checkable redundancy into specifications. These facilities were chosen to
expose common classes of errors. They give specifiers a better chance of
receiving diagnostics about specifications with unintended meanings, in
much the same way that type systems give programmers a better chance
of receiving diagnostics about erroneous programs.

A primary god of Larchisto provide useful feedback to specifiers when
there is something wrong with a specification. Hence we designed LP
primarily as a debugging tool. We are not overly troubled that detecting
inconsistenciesisgenerally quicker and easier than certifying consistency.

We expect to discover flawsin specifications by having attempted proofs
fail. LP does not automatically apply backwards inference techniques, and
it requires more user guidance than some other provers. Much of this
guidance is highly predictable, e.g, proving the hypotheses of deduction
rules as lemmas. Although it is tempting to supply LP with heuristics
that would generate such lemmas automatically, we feel that it is better to
leave the guidance to the user. At many pointsin a proof, many different
heuristics could apply. In our experience, choosing the next step in a proof
(e.g., acasesplit or proof by induction)—or deciding that the proof attempt
should be abandoned—often depends upon knowledge of the application.
LP cannot reasonably be expected to possess this knowledge, especialy
when we are searching for a counterexample to a conjecture, rather than
attempting to prove it. However, in some cases, the LSL Checker may
be able to use the structure of LSL specifications to generate some of the
guidance (e.g., using induction to prove a converts clause) that users must
currently provideto LP.

The checkable redundancy that LSL encourages in specifications aso
supports regression testing as specifications evolve. When we change part
of a specification (e.g., to strengthen or weaken the assertions of one
trait), it is important to ensure that the change does not have unintended
side-effects. LP's facilities for detecting inconsistencies help us discover
grossly erroneous changes. Claims about other traits in the specification,
which imply or assume the changed trait, can help us discover more
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subtle problems. If some of these claims have already been checked, LP's
facilities for replaying proof scripts make it easy to recheck their proofs
after achange—an important activity, but onethat islikely to be neglected
without mechanical assistance.
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Conclusion

Larch is dtill very much a “work in progress.” New Larch interface
languages are being designed, new tools are being built, and the existing
languages and tools are in a state of evolution. Most significantly,
specifications are being written.

But Larch has reached a divide, what Churchill might have called “the
end of the beginning.” Until now, maost of thework on Larch has been done
by the authors of this book and their close associates. We hope that the
First International Workshop on Larch [66] and the publication of thisbook
mark the beginning of the period when most Larch research, devel opment,
and application will be done by people we do not yet know.

THE ESSENCE OF LARCH

Over the years, we have spent many pages describing Larch languages,
tools, and applications. However, the essence of Larch rests in a few
principles that have guided our efforts:

e The most important use for specification is as a tool for helping
to understand and document interfaces. Therefore, clarity is more
important than any other property.

¢ Specifications should not just describe mathematical abstractions,
but real interfaces supplied by programs. They should be written at
thelevel of abstraction at which clientsprogram. Thisusually means
sinking to the level of a programming language.

e Structuring specifications into two tiers, which we have called
the interface tier and the LSL tier, makes specifications easier to
understand and facilitates reuse of parts of specifications.

— Theinterfacetier describesthe observable behavior of program
components. Sincewhat aclient can observeislikely to depend
in fundamental ways on the client programming language,
much can be gained by designing interface specification lan-
guagesthat are optimized for specific programming languages.
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Specifications in this tier can be rather simple, provided that
the right abstractions are provided in the LSL tier.

— The LSL tier describes mathematical abstractions that are
independent of the details of any programming model. These
arethe principal reusable components of specifications. While
we have used only one language (L SL) to write specifications
in this tier, there is no fundamental reasons other languages
could not be used. Languages used in this tier should have a
simple semantics; they need not deal with messy issues such
as runtime errors, which are better handled in the interface tier.

e Specification languages should be carefully designed. Having an
elegant semantics is not enough. Careful attention to syntax and
static semantic checking is crucial.

e Tool support is vital. One of the great virtues of using a forma
notation is that tools can be used to help detect and isolate a variety
of errors. Whenever we have improved our tools to detect a new
classof errors, we have found more errors in existing specifi cations.

¢ Toolsfor checking interface specifications should be integrated with
other programming language tools, e.g., preprocessors that enforce
programming conventions.

e Specification must not be viewed as an isolated activity. It must
be integrated with good programming practice. The goal is not to
specify arbitrary programs, but to use specifications to hel p design,
implement, document, and maintain good programs. Specifications
can help in structuring these activities.

A CAUTIONARY NOTE

Throughout thisbook we have stressed waysin which formal specification
can be used to help in building high quality software. However, we have
tried not lose sight of the fact that formal specification is not a panacea.
Good engineering practice is essential. To quote an anonymous referee of
an early draft of this book,

... bullishness about forma methods must be strongly tem-

pered by the following important realization: Formalization
should be aimed at achieving conceptual clarity, rather than
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8. Conclusion

as a mere exercise in encoding pieces of mathematics. No
notation or toolset, however fancy and elaborate, can be a
substitute for clear thought. At best, formalization can help
clarify ideas and concepts by making them more tangible. At
worst, poor or faulty formalization can cloud and confuse
issues beyond repair.
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Appendix A
An LSL Handbook

A.1 Introduction

This handbook supersedes Piece IV of Larchin Five Easy Pieces[51] and
“A Larch Shared Language Handbook” [46].

READING THE HANDBOOK

This handbook contains a collection of traits written in LSL 2.4 that can
be studied to learn more about LSL. Many traits are also suitable for use
as specification components. They constitute a library for the LCL and
LM3 tools; we hope that they will save others from reinventing wheels—
especialy polygonal ones. Other traitsare morelikely to be used asmodels
for the devel opment of similar specialized specification components.

This handbook is representative rather than complete. The LSL tier
is open-ended because we believe that no handbook or library will ever
include everything that will be needed. Users are encouraged to augment
this handbook with additional traits, and to prepare their handbooks for
particular applications.

Thisisnot atextbook on discrete mathematics. If you already understand
acollection of concepts(e.g., integer arithmetic), their formalization should
make sense to you. If you don't, you should still be able to understand
precisely what the definitions say (or don’'t say), but you probably won'’t
get many clues as to why the particular definitionsin (say) Latti ce or
Abel i anMonoi d are interesting and useful. Think of this handbook as
the* collected formulas’ that might appear asan appendix to amathematics
text.

There are many trade-offs in devel oping this kind of handbook:

simplicity versus completeness,

structure (includetrait by reference) versus explicitness (copy trait),
¢ brevity versus explicit indication of conseguences,

€ONCi Se versus mnemonic names,
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e stylistic consistency versus an illustrative range of valid styles,

¢ standardization (for communication) versusflexibility (for efficiency
in particular cases),

¢ selection among competing notations and definitions for concepts,
e conceptual elegance versus practical utility.

We expect that, in the not-too-distant future, specification handbooks
will most often be used in their online forms, with browsing tools that
enabl e readers to make many of these choices dynamically, according to
their needs and preferences. Unfortunately, this book is still a hostage to
the tyranny of paper, so we' ve had to make these choicesin advance. There
aregenera tendenciesin the choices exhibited here, but we haven’'t applied
any of our own guidelines slavishly. Many of the stylistic variations are
intentional, but there are probably others that we simply didn’t notice.

This handbook does not have to be read front-to-back. There is
no “correct” order in which to study the traits. Fedl free to browse
and skip according to your interests and needs. Early sections tend to
deal with specific constructs that occur frequently in program interface
specifications, while later sections are somewhat more abstract, providing
mathematical building blocks that can be used to define, classify, or
generalize such constructs. When there didn’t seem to be any natural order
for things, we fell back on aphabetical order.

Traits in sections labeled data types or data structures are quite likely
to be used directly in interface specifications. Traits in sections labeled
assumptionsand implicationsor operator definitionsare morelikely to be
used in other traits.

Traitsarelisted intheindex. If you don’t know exactly what areferenced
trait contains, you can aways look it up. However, we have tried to use
familiar names for familiar concepts. Particularly on first reading, it is
probably better to assumethat traitssuch as| nt eger and Tot al Or der
mean what you expect, than toflip continually from trait totrait and section
to section.

Ani npl i es clausedoesnot contributeto the meaning (i.e., thetheory)
of alegal trait. It is perfectly acceptable to ignore them, and it is often best
to do so on first reading. However, they do offer you a chance to check
your understanding, by giving examples of facts that are consequences of
the definitionsin thetrait. They may also include alternative (and perhaps
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more familiar) definitions, or show connections that may not be obvious
from looking at just the definitionsin the traits.

Both i ncl udes and assunes clauses add axioms from referenced
traits. They both have the same semantics within a trait in which they
appear, so it’sfineto ignorethe distinction on first reading. But assunes
clausesimposean additional proof obligationwhenever thetrait containing
themisreferenced in another trait, so they becomevery relevant when using
traits to compose specifications.

Many abstract types are defined in two traits, one of which defines only
the essentia operators that characterize the type, while the other includes
definitions for aricher set of operators in terms of the essential operators.
The former kind of trait tends to be used in assumnes and i npl i es
clauses; the latter, in i ncl udes clauses and in interface specifications.
Compare, for example, Set Basi ¢cs and Set, or Rel ati onBasi cs
and Rel at i on.

Many traitsincludel nt eger andusesort | nt whereit might seemthat
Nat ur al and Nat would be more natural choices—and, in some cases,
would lead to somewhat simpler specifications. This is a consequence of
the decision in the interface languages to base all the whole-number types
onl nt. Thetrait | nt eger Pr edi cat es defines predicates to test for
several commonly-used subsets of theintegers. Thedternativewas alarge
amount of sort-conversion that would severely distract from the clarity of
interface specifications. So we pay asmall priceinthe LSL tier for greater
simplicity in the interface tier.

If a definition seems “unnatural” to you, you will find it instructive to
try to construct amore natural definition yourself. If you find one, you will
have gained some experience in writing LSL specifications; if you don't,
you may have gained some insight into the reason for the *unnatural”
definition.

Thetraitsinthishandbook have passed the scrutiny of the LSL Checker,
which parses, expands trait references, resolves overloading, and sort-
checks. Most of them have not yet been subjected to additional checking
of the kind described in Chapter 7.

The onlineversion of thishandbook isstill evolving. The authorswould
appreciate al kinds of feedback from readers and users. Are there errors or
sources of confusion? Have we omitted something that would be widely
useful? Are there better ways to define some of the concepts?
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NAMING AND LEXICAL CONVENTIONS

Sort names:

e Numeric types: | nt for integers, P for positive numbers, Q for
rationals, F for floating point, and N otherwise.

e Tif thereisonly one“interesting” sort in thetrait.
e Container traits; E for e ements, C for containers.
Operator names:

e o for agenericinfix operator and also for the composition of maps
and relations.

e o for agenericrelation.

For convenience in manipulating the online form of the handbook, we
have chosen a sequence of 1SO L atin characters to represent each non-1SO
Latin symbol used in the handbook. Some of them are chosen for visual
similarity (e.g., — iswritten as- > and < iswritten as <=); others have
been modeled on TeX'’s choices (e.g., o iswrittenas\circ and € is
writtenas\ i n). A completelistisgivenin Section C.

Each Larch interface language definesitsown notationfor literals, based
on the programming language's notation; numerical types will generally
includethetrait schemaDeci nal Literal s.

Many traits have a si ze or count operator whose value is aways
non-negative. For reasons given in the previous section, except within
Section A.15, Number theory, we have giventheir rangeas| nt , fromtrait
I nt eger, rather than as N, from trait Nat ur al .
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A.2 Foundations

DATA TYPE: BOOLEAN

Bool ean: trait
% This trait is given for documentation only.
%It is inplicit in LSL.

i ntroduces

true, false: — Bool

-__: Bool — Bool

AN _, _N¥N__, __ = : Bool, Bool — Bool
asserts

Bool generated by true, false

vV b: Bool

- true == fal se;
- false == true;
true A b == b;
false A b == fal se;
true v b ==true;
false v b == b;
true = b == b;
false = b == true
i mplies
AC (A , Bool),
AC (v, Bool),
Distributive (v for +, A for *, Bool for T),
Distributive (A for +, Vv for *, Bool for T),
I nvolutive (-__, Bool),
Transitive (= for o, Bool for T)
Y bl, b2, b3: Bool
(bl A b2) == =bl v =b2;
=(bl v b2) == =bl A =b2;
bl v (bl A b2) == bl;
bl A (bl v b2) == bl;
b2 v —=b2;
(bl = b2) v (bl = b3) v (b2 = b3);
bl = b2 == -bl v b2
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OPERATOR DEFINITION: IF THEN ELSE

Conditional (T): trait
% This trait is given for docunmentation only.
%It is inmplicit in LSL.
introduces if__then__else_: Bool, T, T —» T
asserts
VX, y, z: T
if true then x else y == x;
if false then x else y ==
inmplies ¥V b: Bool, x: T
if b then x else x ==
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A.3 Integers

DATA TYPE
Integer (Int): trait
% The usual (unbounded) integers operators
i ncl udes
Decimal Literals (Int for N),
Total Order (Int)
i ntroduces
0, 1. — Int
succ, pred, -__, abs: Int — Int
, -, * tInt, Int — Int

div, mod, mn, nax: Int, Int — Int
asserts
Int generated by 0, succ, pred
vV X, y: Int
succ(pred(x)) == x;
pred(succ(x)) == x;
-0 == 0O;
-succ(x) == pred(-x);
-pred(x) == succ(-Xx);
abs(x) == max(-x, X);
+ 0 == Xx;
+ succ(y) == succ(x + y);
+ pred(y) == pred(x +vy);
-y ==X+ (y);
* 0 ==0;
*succ(y) == (x*y) + Xx;
*pred(y) == (x*y) - X;

X X X X X X X

> 0 = nmod(x, y) + (div(x, y) *vy) = x;
> 0 = nmod(x, y) > O;
> 0 = mod(x, y) < vV;
n(x, y) ==if x
max(x, y) ==if x
X < succ(Xx)
implies
AC (+, Int),
AC (*, Int),
AC (mn, Int),
AC (max, Int),
RingWthUnit (Int for T)
Int generated by 1, +, -__:Int—lInt

< <K<

3

y then x else vy;

<
< y then y else x;
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vV X, y: Int
X < y == succ(x) < succ(y);
X <y ==x < succ(y)
converts
1, -__:Int—=Int, -__lnt,Int—=lnt,

abs, +, *, div, rraj, mn, mx, <, >,

LITERALS

Decimal Literals (N): trait
% A built-in trait schema given here
% f or docunentation only

i nt roduces
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 %
. — N

succ: N — N
asserts equations

1 == succ(0);
2 == succ(l);
3 == succ(2);
% ... as far as needed for any literals

% of sort N appearing in the including trait

OPERATOR DEFINITIONS
IntegerPredicates (Int): trait

% Frequently used subranges of the integers

assumes | nt eger

i ntroduces
I nRange: Int, Int, Int — Bool
Natural , Positive, Signed, Unsigned: Int
maxSi gned, nmaxUnsi gned: — Int

asserts forall n, low, high: Int

I nRange(n, low, high) ==low < n A n <
Natural (n) == n > 0;

Positive(n) == n > O;

Si gned(n) ==

— Bool

hi gh;

I nRange(n, -succ(nmaxSigned), maxSi gned);

Unsi gned(n) == I nRange(n, 0, maxUnsi gned)
inplies V n: Int

Positive(n) = Natural (n);

Unsi gned(n) = Natural (n)
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A.4 Enumerations

Enunmeration (T): trait
% Enuner ation, conparison, and ordi nal position
% operators, often used with "enumeration of"
assumes | nt eger
i ncl udes DerivedOrders
i ntroduces
first, last: — T
succ, pred: T — T
ord: T — Int
val: Int — T
asserts
T generated by first, succ
T generated by |ast, pred
vV x, y: T
ord(first) == 0;
X # last = ord(succ(x)) = ord(x) + 1;
X # last = pred(succ(x)) = x;
val (ord(x)) == x;
X <y ==ord(x) < ord(y);
x < last
i mplies
Tot al Or der
T generated by val
T partitioned by ord
vx: T
x # first = succ(pred(x)) = x;
X # last = x < succ(x);
first < x;
ord(x) > 0
converts
first: »T, succ: T—T, pred: T—T, ord,
<:T, T—Bool, >:T, T—Bool,
<:T, T—Bool, >:T, T—Bool
exenpting succ(last), pred(first)
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A.5 Containers

Throughout this section we use E for the element sort, and C for the
container sort. This simplifies comparisons among data structures and
makes it easier to write generic operator definitions that work for several
kinds of containers. Since variable names are local to traits, we imposed
no such uniformity on them.

UNORDERED DATA STRUCTURES

SetBasics (E, O: trait
% Essential finite-set operators
i ntroduces
{}y: - ¢C
insert: E, C —
€ o E C-—
asserts
C generated by {}, insert
C partitioned by €
Vs: C e el e2 E

—(e € {});
el € insert(e2, s) == el =e2 v el € s
i mplies

InsertGenerated ({} for enpty)
Ve el e2: E s: C
insert(e, s) # {};
insert(e, insert(e, s)) ==insert(e, s);
insert(el, insert(e2, s)) ==
insert(e2, insert(el, s))
converts €
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Set (E, ©O: trait
% Conmon set operators
i ncl udes
Set Basi cs,
| nt eger,
DerivedOrders (C, C for <, D for >,
C for <, D for >)
i ntroduces
_ ¢ __: E C — Boal
delete: E, C —» C
{_}: E—=C
_Jy_, _n_, -_1C C—=C
size: C — Int
asserts
Ve el e2: E s, s1, s2: C
e ¢ s== (e cs);
{ e} ==insert(e, {1});
el € delete(e2, s) ==el # e2 A el € s;

e € (s1 Us2) ==e €sl v e € s2;
e € (s1 ns2) ==e € sl A e € s2;
e € (sl-s2) ==e sl A e ¢ s2;
size({}) ==0;

size(insert(e, s)) ==
if e ¢ s then size(s) + 1 else size(s);
sl € s2 ==s1- s2 ={}

implies
Abel i anMonoid (U for o, {} for unit, Cfor T),
AC (n, O,

Join® (U, {} for enpty),

MenberQp ({} for enpty),

Partial Order (C, C for <, D for >,

Cc for <, D for >)

C generated by {}, {__}, U

Ve E s, s1, s2: C
sl C s2 = (e € s1 = e € s2);
size(s) > O

converts
e, ¢, {__}, delete, size, U, n, -:C C-C,
¢ 2 C D
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BagBasics (E, O: trait
% Essential bag operators
i ncl udes | nteger
i ntroduces
{}: = C
insert: EfE C — C
count: E, C — Int
asserts
C generated by {}, insert
C partitioned by count
vV b: C e el e2: E
count(e, {}) == 0;
count(el, insert(e2, b)) ==
count(el, b) + (if el = e2 then 1 else 0)
i mplies
Insert Generated ({} for enpty)
Ve E b: C
insert(e, b) # {};
count(e, b) > 0
converts count
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Bag (E, O: trait
% Conmon bag operators
i ncl udes
BagBasi cs,

DerivedOrders (C, C for <, D for >,

C for <, D for >)

i ntroduces
delete: E, C — C
{_}: E—=C
€ _, ¢ _: E C — Bool
size: C — Int
U _, - C C-—>C
asserts

Ve el e2: E b, bl, b2: C

count (el, delete(e2, b)) ==
if el = e2 then max(0, count(el, b) - 1)
el se count(el, b);
{ e} ==insert(e, {1});
e € b ==count(e, b) > 0;
e ¢ b ==count(e, b) = 0;
size({}) ==0;
size(insert(e, b)) == size(b) + 1;
count (e, bl U b2) ==
count (e, bl) + count(e, b2);
count (e, bl - b2) ==
max(0, count(e, bl) - count(e, b2));
bl € b2 ==bl - b2 = {};

i mplies
Abel i anMonoid (U for o, {} for unit, Cfor T),
JoinOp (U, {} for enpty),
MenberQp ({} for enpty),
Partial Order (C, C for <, D for >,

v

Cc for <, D for >)
e, el, e2: E, b, bl, b2: C
insert(e, b) # {};
count (e, b) > 0;
count (e, b) < size(b);
bl C b2 = count(e, bl) < count(e, b2)

converts count, €, ¢, {_}, U, -:C C=C

delete, size, C, D, C, D

169

www.manharaa.com



170 A.5. Containers

INSERTION ORDERED DATA STRUCTURES

StackBasics (E, O: trait
% Essential LIFO operators
i ncl udes I nteger
i ntroduces
empty: — C
push: E, C —» C
top: C — E
pop: C —» C
asserts
C generated by enpty, push
Ve E stk: C
top(push(e, stk)) == e;
pop(push(e, stk)) == stk;
inplies converts top, pop
exenpting top(enpty), pop(enpty)

Stack (E, ©O: trait
% Conmmon LI FO operators
i ncl udes StackBasics, |nteger

i ntroduces
count: E, C — Int
€ : E C— Boo

size: C — Int
i sSEnpty: C — Boo

asserts
Ve E stk: C
size(enpty) == 0;

si ze(push(e, stk)) == size(stk) + 1
i SEnpty(stk) == stk = enpty
implies
Cont ai ner (push for insert, top for head,
pop for tail)

C partitioned by top, pop, isEnpty

VvV stk: C
size(stk) > O

converts top, pop, count, €, size, isEnpty
exenpting top(enpty), pop(enpty)
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Queue (E, O: trait
% FI FO operators
i ncl udes I nteger
i ntroduces
empty: — C
append: E, C — C
count: E, C — Int
€ __: E C - Boo
head: C — E
tail: C - C
len: C — Int
i sSEnpty: C — Boo
asserts
C generated by enpty, append
vag C e el E
count (e, enpty) == 0;
count (e, append(el, q)) ==
count(e, gq) + (if e = el then 1 else 0);
e € qg==count(e, q) > 0;
head(append(e, q)) ==
if q = enpty then e el se head(q);
tail (append(e, q)) ==
if g = enpty then enpty
el se append(e, tail(q));
| en(enpty) == 0;

| en(append(e, q)) ==len(q) + 1;
i sEnpty(q) == q = enpty
implies
Cont ai ner (append for insert)
C partitioned by head, tail, isEnmpty
vag C
len(q) > 0
converts head, tail, len

exenpting head(enpty), tail (enpty)
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Deque (E, Q: trait
% Doubl e ended queue operators
i ncl udes I nteger

i ntroduces

empty: — C

4 _:+E C—-C

_F_:C E-—>C

count: E, C — Int

€ __: E C — Bool
head, last: C — E

tail, init: C —- C

len: C — Int
i sEnpty: C — Bool
asserts
C generated by enpty, F
Ve el e2: E d C
count (e, enpty) == 0;
count (e, el 4 d) ==
count(e, d) + (if e = el then 1 else 0);
e € d == count (e, d) > O0;
e 1 enpty == enpty F e;
(el 4d) Fe2==e1 4 (dF e2);
head(e - d) == e;
last(d - e) == e;
tail (e 4 d) ==d;
init(d - e) ==d;
| en(enpty) == 0;
len(d - e) ==1len(d) + 1;
i SEnpty(d) == d = enpty
i mplies
Stack (head for top, tail for pop,
4 for push, len for size),
Queue (- for append, last for head,
init for tail)
C generated by enpty, A
C partitioned by |len, head, tail
C partitioned by len, last, init
vd C
d # enpty
= (head(d) 4 tail(d) = d
Ainit(d) F last(d) = d)
converts head, last, tail, init, len
exenpti ng head(enpty), |ast(enpty),
tail (enmpty), init(enpty)

www.manharaa.com




Appendix A. An LSL Handbook

List (E, ©: trait
% Add si ngl eton and concat enati on
i ncl udes Deque
i ntroduces
{_}: E—=C
| .+ ¢ Cc—C
asserts v e: E Is, Isl, Is2: C
{e} ==enmpty  e;
Is || empty ==1s;

sl || (Is2Fe) ==(Is1l || Is2) F e
i mplies
C generated by empty, {__}, ||
converts head, last, tail, init, len, {__}, ||

exenpting head(enpty), |ast(enpty),
tail (enmpty), init(enpty)

String (E, Q: trait
% | ndex, substring
i ncl udes Li st
i ntroduces
_[_]:¢ Int - E
prefix: C, Int — C
removePrefix: C, Int — C
substring: C Int, Int —» C
asserts Vv e: E s: C i, n: Int
tail (empty) == enpty;
init(enmpty) == enpty;
s[0] == head(s);
n >0 = s[n+ 1] =tail(s)[n];
prefix(enmpty, n) == enpty;
prefix(s, 0) == enmpty;
n >0
= prefix(e 4s, n+ 1) = e 4 prefix(s, n);
renovePrefix(s, 0) ==s;
n >0
= renovePrefix(s, n + 1)
= renovePrefix(tail(s), n);
substring(s, 0, n) == prefix(s, n);

i >0
= substring(s, i + 1, n)
= substring(tail(s), i, n)
implies

I ndexOp (H for insert)
Cpartitioned by len, _ [_]
converts tail, init
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Sequence (E, O: trait
% Conpari son, subsequences
assunmes StrictPartial Oder (>, E)
i ncl udes
Lexi cogr aphi cOr der,
String
i ntroduces

i sPrefix, isSubstring, isSubsequence: C, C — Bool

find: C, C — Int
asserts V e, el, e2: E s, s1, s2: C

i sPrefix(sl, s2) ==s1 = prefix(s2, len(sl));

i sSubstring(sl, s2) ==

i sPrefix(sl, s2) v isSubstring(sl, tail(s2));

i sSubsequence(enpty, s);
—i sSubsequence(e 4 s, enpty);
i sSubsequence(el 4 sl1, e2 4 s2) ==
(el = e2 A isSubsequence(sl, s2))
VvV isSubsequence(el 4 sl1, s2);
find(sl, s2) ==
if isPrefix(sl, s2) then O
else find(sl, tail(s2)) + 1
i mplies
I sPO (isPrefix, O,
I sPO (isSubstring, Q,
| sPO (i sSubsequence, O)
Vs, s1, s2:. C, i, n: Int
i sPrefix(prefix(s, n), s);
i sSubstring(substring(s, i, n), s);

i sSubstring(sl, s2) = isSubsequence(sl, s2)

converts

i sPrefix, isSubstring, isSubsequence, find

exenpting vV s: C, e E find(e 4 s, enpty)
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CONTENT ORDERED DATA STRUCTURES

PriorityQueue (>:E E—Bool, E, ©: trait
% Enumer at e by order on el enments
assumes Total Order (E for T)

i ncl udes I nteger

i ntroduces
empty: — C
add: E, C — C
count: E, C — Int
€ __: E C - Boo
head: C — E
tail: C - C
len: C — Int
i sSEnpty: C — Boo

asserts
C generated by enpty, add
C partitioned by head, tail, isEnpty

Ve el: E g C

count (e, enpty) == 0;

count (e, add(el, q)) ==
count(e, gq) + (if e = el then 1 else 0);

e € g==count(e, q) > 0;

head(add(e, q)) ==
if q =enpty v e > head(q) then e
el se head(q);

tail (add(e, q)) ==
if g =-enpty v e > head(q) then ¢
el se add(e, tail(q));

l'en(enpty) == 0;
len(add(e, gq)) ==len(qgq) + 1
i sEnpty(q) == q = enpty

i nplies

Cont ai ner (add for insert)
Ve el e2:. E q C
add(el, add(e2, qg)) = add(e2, add(el, q));

len(q) > O;
add(e, q) # enpty
converts count, &, head, tail, len, isEnpty

exenpting head(enpty), tail (enpty)
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ChoiceSet (E, O: trait

% A set with a weakly-specified choose operator
i ncl udes Set

i ntroduces
choose: C — E
rest: C— C
i sEmpty: C — Bool
asserts vV e, el: E s: C
s # {} = choose(s) € s;

s # {} = rest(s) = delete(choose(s), s);
i sEmpty(s) ==s = {}
i mplies
C partitioned by choose, rest, isEmpty
Ve E s: C
s #{} = s

= insert(choose(s), rest(s))
ChoiceBag (E, Q: trait

% A bag with a weakl y-specified choose operator
i ncl udes Bag

i ntroduces
choose: C — E
rest: C —» C
i sEmpty: C — Bool
asserts vV e, el: E, b: C
b # {} = choose(b) € b;
b #{} = rest(b) = delete(choose(b), b);
i sEmpty(b) ==b = {}
i mplies
Cont ai ner (choose for head,
{} for enpty)

C partitioned by choose, rest, isEmpty
Ve E b C

rest for tail,

b #{} = b = insert(choose(b), rest(b))
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ASSUMPTIONS AND IMPLICATIONS

InsertGenerated (E, C: trait
% Cs contain finitely many E s
i ntroduces
empty: — C
insert: Ef C —» C
asserts
C generated by enpty, insert

Container (E, Q: trait
% head and tail enunerate contents of a C
i ncl udes I nsert Generated, |nteger
i ntroduces
i sEmpty: C — Bool
count: E, C — Int

€ __: E C — Bool

head: C — E

tail: C —- C
asserts

C partitioned by isEnpty, head, tail
Ve el: E c: C
i sSEnpty(enpty);
—i sEnpty(insert(e, c));
count (e, enpty) == 0;
count (e, insert(el, c)) ==
count(e, c) + (if e = el then 1 else 0);
e € ¢c == count (e, ¢c) > O;
-i sEmpty(c) =
count (e, insert(head(c), tail(c)))
= count(e, c)
i mplies
vc: C
—isEnpty(c) = count(head(c), c) > O;
converts i sEmpty, count, €
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OPERATOR DEFINITIONS

Menber Op: trait
assumes | nsert Gener at ed

i ntroduces
€ _, __ ¢ __: E C — Bool
asserts vV e, el, e2: E, c: C
e ¢ c==-(ec€c);
e ¢ enpty;
el € insert(e2, c) == el = e2 v el € c

inmplies converts ¢, ¢

JoinOp (X): trait
% Cont ai ner conbi ni ng oper at or
% e.g., union, concatenation
assumes | nsert Gener at ed

introduces X : C, C— C
asserts Vv e: E ¢, cl, c2: C

enpty X ¢ == c;

insert(e, cl) X c2 == insert(e, cl X c2)
implies

Associ ative (X, Q
converts X

Reverse(p: trait
% An operator on lists comonly used
% to denpnstrate theorem provers.
assumes Li st
i ntroduces reverse: C —» C

asserts Ve E I, 11, 12: C
reverse(enpty) == enpty;
reverse(e 4 1) ==reverse(l) F e
inplies Ve E I, 11 12: C
reverse(reverse(l)) ==1;
| # enpty = head(reverse(l)) = last(l);
| # enpty
= tail(reverse(l)) = reverse(init(l));
len(reverse(l)) ==len(l);
reverse(l1l || 12) ==reverse(l2) | reverse(ll)

converts reverse
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I ndexOp: trait
% Select the i-th elenment in the container
% (in enuneration order).
assunes | nteger, Container
introduces _[_]: C Int - E
asserts v c: C i: Int
c[ 0] == head(c);
i > 0 = c[i+l] = tail(c)[i]

Coer ceCont ai ner (DC, RC) definesan operator to convert from
aterm of one container sort, DC, to a term of another container sort, RC,
with the same elementsinserted in the same order. For exampl e, astack can
be mapped to aqueue. Moreinterestingly, alist can be mapped to abag, or
abag to aset; these mappingsloseinformation on order and on multiplicity,
respectively, so theinverse mappingswould introduce inconsi stencies.

CoerceContai ner (DC, RC): trait
% Insert each elenment of DC in a new RC
assunes
I nsert Generated (DC for O,
I nsertGenerated (RC for Q)
i ntroduces coerce: DC — RC
asserts Vv dc: DC, e: E
coerce(enpty) == enpty;
coerce(insert(e, dc)) ==insert(e, coerce(dc))
i mpl i es converts coerce

Permutation (E, O: trait
% Test for having the same el ements
assumes Cont ai ner
i ncl udes
Bag (B for O,
CoerceContainer (C for DC, B for RQ)
i ntroduces isPernutation: C, C — Boo
asserts v cl, c2: C
i sPernutation(cl, c2) == coerce(cl) = coerce(c?2)
inplies Vv e: E cl1, c2: C
i sPernutation(cl, c2)
= count (e, cl) = count(e, c2)
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The following traits “promote” various operators on elements to

corresponding operators on containers.

El ement Test (pass, E, C, T): trait
%filter collects el enents accepted by pass
assumes I nsert Gener at ed
i ntroduces
pass: E, T — Bool
filter: C T — C
all Pass: C, T — Bool
sonePass: C, T — Bool
asserts v c: C e E t: T
filter(enpty, t) == enpty;
filter(insert(e, c), t) ==
if pass(e, t) then insert(e, filter(c, t))
else filter(c, t);
al | Pass(enpty, t);
al | Pass(insert(e, c), t) ==
pass(e, t) A allPass(c, t);
somePass(c, t) ==filter(c, t) # enpty
i mplies converts filter, somePass, all Pass

Pai rwi seExtension (o, ®, E, O: trait
% | nduce a binary operator on containers
% froma binary operator on el enents.
assunes Container (E, O

i nt roduces
o 1 E E—E
® . C C—-2C

asserts Vv el, e2: E, cl1, c2: C
enpty @ enpty == enpty;
(cl # empty A c2 # enpty)
= ¢l ® c2 = insert(head(cl) o head(c2),
tail(cl) ® tail(c2));
i mplies converts ®
exenpting vV e: E, c: C
enpty ® insert(e, c), insert(e, c) ® enpty
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Poi ntwi sel mage: trait
% Apply el emOp to each el enent
assumes
I nsert Generated (DE for E, DC for Q),
I nsert Generated (RE for E;, RC for ©
i ntroduces
el emp: DE — RE
contai nerp: DC — RC
asserts V dc: DC, de: DE
cont ai ner Op(enpty) == enpty;
cont ai ner Op(i nsert(de, dc)) ==
i nsert (el emOp(de), containerOp(dc))
i nplies converts containerQp

ReduceCont ai ner (unit, o): trait
% I nsert the operator in enuneration order
assumes Cont ai ner

i ntroduces
unit: — E
o : E E—>E

reduce: C — E
asserts vV c: C
reduce(c) ==
if ¢c = enpty then unit
el se head(c) o reduce(tail(c))
i nmplies converts reduce
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A.6 Branching structures

DATA STRUCTURES

Thefollowing trait defines the operators on alist (of sort C), each of whose
elements (of sort E) is either an atom (of sort A) or alist.

ListStructure (A E Q: trait
% O assi cal LISP
i ncl udes Li st
E union of list: C, atom A

BinaryTree (E, T): trait
% One of the many interesting tree structures

i ntroduces
[_]ZE—>T
[, _1: T, T—>T

content: T — E
first, second: T — T
isLeaf: T — Boo
asserts
T generated by [_ ], [__, _1]
T partitioned by content, first, second, isLeaf
Ve E tl1, t2. T
content([e]) == e;
first([tl, t2]) ==1t1,;
second([tl, t2]) ==1t2;
i sLeaf ([e]);
—isLeaf ([t1, t2])
i mplies converts islLeaf
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OPERATOR DEFINITIONS
ListStructureQps (A E O: trait
% Operators frequently used in
% t heor em provi ng denonstrati ons.
assumes ListStructure

i ntroduces
flatten, reverseAll: C — C
count Atons: C — Int
asserts Va: A |, I1, 12: C

flatten(enpty) == enpty;
flatten(atom(a) 4 1) == atom(a) 4 flatten(l);
flatten(list(l1l) 412) ==
flatten(l11) || flatten(l2);
reverseAl | (empty) == enpty;
reverseAll (atom(a) 4 1) ==
reverseAll (1) F atom(a);
reverseAll (list(l1) 412) ==
reverseAll (12) F list(reverseAll(l11));

count Atonms(l) ==len(flatten(l))
i mplies
vi, 11, 12: C
flatten(l1 || 12) ==flatten(l1) || flatten(l?2);
flatten(flatten(l)) ==flatten(l);
reverseAll (11 || 12) ==
reverseAll (12) || reverseAl(l1);

reverseAll (flatten(l)) ==
flatten(reverseAll (1));
reverseAl |l (reverseAll (1)) ==1;
countAtons(l1 || 12) ==
count Atons(l 1) + countAtons(l2);
count Atons(flatten(l)) == count Atons(l);
count Atons(reverseAl |l (1)) == count Atons(l)

converts flatten, reverseAll, countAtons
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A.7 Maps

DATA STRUCTURES

Arrays are heavily-used data structures, programming languages often
provide a large number of operators. The following definitions are only a

sample.
Arrayl (E, I, A: trait
% Basi ¢ one-di nensi onal array operators
i ntroduces
assign: A I, E— A
_[_] A, | —- E
asserts
Va A i, j: 1, e E
assign(a, i, e)[j] ==

if i =) then e else a[j]

Array2 (E, 11, 12, A: trait
% Basi c two-di nmensi onal array operators

i ntroduces
assign: A I1, 12, E— A
[, _1: A 11, 12 - E
asserts

Voa A i1, j1: 11, i2, j2: 12, e: E
assign(a, i1, i2, e)[j1, j2] ==
ifil=j1 Ai2=]2then e else a[jl, j2]

ArraySlice2 (E, 11, 12, A: trait
% A two-di nensi onal array
%treated as a vector of vectors
i ncl udes

Arrayl (E, 12, Al),
Arrayl (A1, 11, A

i ntroduces
assign: A I1, 12, E— A
[, _1: A 11, 12 - E
asserts

Va A il: 11, i2: 12, e: E
a[il, i2] ==(alil])[i2];
assign(a, il, i2, e) ==
assign(a, i1, assign(alil], i2, e))
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Themapsof thefollowingtrait arefinitely generated by {} andupdat e.

FiniteMap (M D, R): trait
% An Mis a map fromDs to Rs.
i ntroduces
{}: = M
update: M D, R —- M
apply: M D — R
defined: M D — Bool
asserts
M generated by {}, update
M partitioned by apply, defined
vm M d, dl, d2: D, r: R
appl y(update(m d2, r), dil) ==
if d1 = d2 then r else apply(m dl);
—defined({}, d);
defi ned(update(m d2, r), dl) ==
dl = d2 v defined(m dil)
i mplies
Arrayl (update for assign, apply for _ [_ 1],
Mfor A, Dfor I, Rfor E)
converts apply, defined

exenpting V d: D apply({}, d)

OPERATOR DEFINITION

ConposeMaps (ML, M2, D, T, R: trait
%If ml is a map fromDto T
%and mM2 is a mp fromT to R
%m on2 is amp fromDto R
assunes
FiniteMap (M, T, R,
FiniteMap (M2, D, T)
i ncl udes FiniteMp
introduces o : M, M — M
asserts Vv nil: M, n2: M, d: D
apply(mL o n2, d) == apply(ml, apply(n2, d));
defined(m o n2, d) ==
defined(nm2, d) A defined(nml, apply(n2, d))
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A.8 Reations

DATA STRUCTURE

The following traits do not presume that the domain sort, E, is generated
by any fixed set of operators. Subsets of E are represented by subrelations
of theidentity relation.

Relation (E, R: trait
i ncl udes
Rel ati onBasi cs,
Rel ati onQps,
Rel ati onPr edi cat es

Rel ati onBasics (E, R: trait
%el (r )e2 neans el is related to e2 by r.

i ntroduces
_{_Y_: E, R E — Bool
- T, 1: - R
[_, _]ZE,E—>R
-, S R—->R
__U_: R R—R
asserts

R partitioned by __ ( __ ) __

Ve el e2 e3, e4 E r, rl r2: R
-(el ( — ) e2);
el ( T ) ez

el (| ) e2==e¢el = e2;

el ([e2, e3] ) ed ==el = e2 A e3 = e4;

el ( -r ) e2===(el (r ) e2);

el (r=1)e2==€2 (r ) el

el (rlur2)e2==el(rl)e2 vel{(r2)e2
inmplies

Abel i anMonoid (— for unit, U for o, Rfor T),
Involutive (__ "% R,
Involutive (-__, R
equati ons
-— == T;

converts u, -__, -1
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OPERATOR DEFINITIONS

The skol em operator isintroduced solely to get around the absence of
existential quantifiersin LSL.

Rel ati onOps: trait
% Useful non-primtive operators on relations.
assumes Rel ati onBasi cs
i ncl udes
DerivedOrders (R, C for <, D for >,

C for <, D for >)

i ntroduces
€ _, __ ¢ __: E, R — Bool
set, dom range, _*, *: R— R
N o, - , _x R R=R

donRestri ct, range%strict, imge: RR, R - R
skolem E, R R E — E

asserts
Ve el e2 e3 E r, rl, r2: R
ecr=e{r ) e
ed¢gr == (e cr);

set(r) ==r nI;
don(r) ==set(r o T);
range(r) ==set(T o r);
el (rlnr2)e2==el (rl)e2 A el {r2) e2
(el (rl1)e2 A e2 (r2 ) e3)

=> el {(rlor2) e3
el {(rlor2) e2

= (el (rl1 ) skolem(el, r1, r2, e2)

A skolem(el, rl, r2, e2) {(r2 ) e2);

rt ==r o (r*);
r* =1 U (rt);
(rl =1 Ur2 Ar2=r1rorl) =

((r1) Crl A (r%) Cr2);
ri-r2==r1n(-r2);
ri x r2 ==set(rl) o T o set(r2);
ricr2=r1-r2 = —;
donRestrict(rl, r2) ==rl n (r2 o T);
i mge(rl, r2) ==set(rl) o r2;
rangeRestrict(rl, r2) ==r1 nNn (T o r2)
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i mplies
Abel i anMonoid (T for unit, n for o, Rfor T),
Distributive (U for + n for *, Rfor T),
Distributive (n for + U for *, Rfor T),
| denpotent (set, R),
Monoid (I for unit, R for T),
Lattice (Rfor T, U for u, n for n,
C for <, D for >, c for <, D for >),
Partial Order (R C for <, D for >, C for <,

O for >)
Ve E r, rl r2: R
e €cr ==e € set(r);
-(rlur2) =(-r1) n(-r2);
-(r1 nr2) ==(-r1) U (-r2);
(rl or2)y~t==(r27Y o (r17}
converts
€, ¢, set, dom range, _*, _* _ - | x,
U n, o -:R-R "1 C, D c, D

donRestrict, image, rangeRestrict

Set ToRel ation: trait

% Map a (finitely generated) set
%to the relation that represents it.
assumes Set Basics, Rel ationBasics
i ntroduces

relation. C — R
asserts

Ve E s: C

relation({}) == —;

relation(insert(e, s)) ==[e, e] U relation(s)
implies
Ve E s: C
e cs==e (relation(s) ) e

converts relation
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The predicates in the next trait are closely related to the theories defined
in Section A.11, but they define the properties of relationstrested asval ues,
whereas Section A.11 defines properties of relations treated as operators.
Thisduplicationis a price of not using a higher-order logicin LSL.

Rel ationPredicates: trait
% Tests for useful properties
% of individual relations.
assumes
Rel at i onBasi cs,
Rel ati onOps
i ntroduces
antisymetric, asymetric, equival ence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive: R — Boo
into, onto: R R — Bool

asserts
vr, rl, r2: R
antisymetric(r) == (r n (r=1)) CI;
asymetric(r) ==r n (r7}) = —;

equi val ence(r) ==
reflexive(r) A symetric(r) A transitive(r);
functional (r) == ((r7Y) or) C I;
irreflexive(r) ==r nl = —;
oneToOne(r) ==r1 o (r=Y) = I;
reflexive(r) ==1 C
symetric(r) ==r =
total (r) == dom(r) = I;
transitive(r) ==r = rt;
into(rl, r2) ==range(rl) C set(r2);
onto(rl, r2) ==set(r2) C range(rl);
i mplies converts
antisymetric, asymetric, equival ence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive, into, onto

r;
r -1
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A.9 Graph theory

Gaph (N, §Q: trait
%nl (g )n2 nmeans that there is
% an edge fromnl to n2ing
includes Relation (N for E, Gfor R
i ntroduces
nodes, undirected: G — G
isPath: N, N, G — Bool
strongl yConnect ed, weakl yConnected: G — Bool
asserts Vv nl, n2: N, g: G
undirected(g) ==g U (g™ h;
nodes(g) == don(g) U range(Q);
isPath(nl, n2, g) ==nl {( g* ) n2;
strongl yConnect ed(g) == g* = nodes(g) x nodes(Q);
weakl yConnect ed(g) ==
strongl yConnect ed(undirected(qg))
i mplies
v nl, n2: N g G
(strongl yConnected(g) A nl € nodes(Q)
A n2 € nodes(Qg))
= isPath(nl, n2, g)
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A.10 Properties of single operators

Associ ative (o, T): trait
introduces __ o __: T, T —=T
asserts V x, vy, z: T

(X oy) oz ==X o (y o 2)

Conmmut ative (o, T, Range): trait

introduces __ o _: T, T — Range
asserts VvV x, y: T
X oy ==Y oX

AC (o, T): trait
introduces __ o _: T, T —=T
asserts V x, vy, z: T
(X oy) oz ==X o (y o 2);
X oy ==Y oX
implies
Associ ati ve,
Commut ative (T for Range)

| denpotent (op, T): trait
introduces op: T — T
asserts vV x: T

op(op(x)) == op(x)

Involutive (op, T): trait
introduces op: T — T
asserts vV x: T

op(op(x)) == x

191
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A.11 Properties of relational operators

Compare with Rel ati onPr edi cat es, page 189

Antisymretric (o): trait
introduces __ o : T, T — Bool
asserts VvV x, y: T

(X oy Ay oX) =>X =Y

Asynmetric (o): trait
introduces __ o __: T, T — Bool
asserts VvV x, y: T
X oy = =a(y o Xx)

Functional (¢): trait
introduces __ o : T, T — Bool
asserts V x, vy, z: T
(X oy AXo2z) =Yy =1z

Irreflexive (¢): trait
introduces __ o : T, T — Bool
asserts vV x: T
—|(X o X)

OneToOne (o): trait

introduces __ o : T, T — Bool
asserts V x, y, z: T
(X oy AXo2z) =Yy =1z
(X oz Ay oz) =>X =y,
Refl exive (¢): trait
introduces __ o : T, T — Bool
asserts vV x: T
X ¢ X
Symmetric (o): trait
introduces __ o : T, T — Bool
asserts VvV x, y: T
X oYy ==y ¢X

i mplies Comutative (¢ for o, Bool for Range)
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Transitive (o): trait
introduces __ o __: T, T — Bool
asserts V x, y, z: T
(X oy Ayoz) => X0z

Equi val ence: trait
i ncl udes
(Refl exive, Symetric, Transitive)(= for o)

Equality (T): trait
% This trait is given for docunentation only.
%It is inmplicit in LSL.
introduces __ = _, __ # __: T, T — Boal
asserts
T partitioned by =
VX, y, z: T
X = X;
X =Yy == = X;
(X =y Ay =2) = x =z
X #y==-(x=Y)
i mpl i es Equival ence (= for =)

193
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A.12 Orderings

PARTIAL AND TOTAL ORDERS

IsPO (<, T): trait
% < is a partial order on T

introduces < : T, T — Bool
asserts V x, vy, z: T
x < X;

< zZ;
x <y Ay < x==
i mplies
Antisymetric ( <),
PreCr der,
Ref | exi ve (<),
Transitive (<)
T partitioned by <

(x €<y Ay €£2) =2x <
=Yy

Partial Order (T): trait
i ncl udes 1sPO, DerivedOders
i mplies
Partial Order (> for <, < for >,
> for <, < for >),

StrictPartial Oder (<, T)

IsTO (<, T): trait
% < is atotal order on T
introduces < : T, T — Bool
asserts V x, y, z: T

X < X;
(x <y Ay < 2)

y
X y
inmplies |

Total Order (T): trait

i ncludes 1sTO DerivedOders

i mplies
Parti al O der,
StrictTotal Order (<, T),
Total Order (> for <, < for >,

> for <, < for >)

T partitioned by <

Z;

I
< IA

=
X

X
ANIVAN

n <>
O<x <
4IAIA

X
X
P ot al PreOrder
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ASSUMPTIONS AND IMPLICATIONS

PreOder (<, T): trait
i ncl udes Reflexive (<), Transitive (<)
inmplies Vv x, vy, z: T
x < X;
(x <yAy<z)=2x <z

Total PreOrder (<, T): trait
i ncl udes PreOrder
asserts VvV x, y: T
X <y Vy <X

StrictPartial Oder (<, T): trait
includes Irreflexive (<), Transitive (<)
i nplies
Asymmetric (<)
VX, y, z: T
(X < X);
(x <y Ay<z) =>x <1z

StrictTotal Order (<, T): trait
i ncludes StrictPartial Oder
asserts VvV x, y: T

X <Yy VYy <X VX=Y

OPERATOR DEFINITIONS

DerivedOrders (T): trait
% Define any three of the conparison operators,
% gi ven the fourth

i ntroduces
<, _> , _ <L 4, _>»_ T T - Bool
asserts Vv x, y: T
X <y==x <Yy VX=Y,
X <y=x <y A a(x=y);
X >2y==y <X
X >y ==y <X
i mplies
converts >, <, >
converts <, <, >
converts <, >, >
converts <, >, <

195
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MnMax (T): trait
assunes Tot al Or der
i ntroduces
mn, mx: T, T - T
asserts VvV x, y: T

mn(x, y) ==if x < y then x else vy;
max(x, y) ==if x > y then x else y
implies

AC (mn, T),

AC (max, T)

converts mn, nax

Lexi cographi cOrder (E, O: trait
% "Dictionary" order on C
assumes
Cont ai ner,
StrictTotal Order (<, E)
i ncl udes DerivedOrders (O
asserts Vv c1, c2: C
cl < c2 ==
c2 # enpty
A (cl = enpty
v (if head(cl) = head(c2)
then tail (cl) < tail(c2)
el se head(cl) < head(c2)))
implies
Total Order (O
converts <:C,C—Bool, >:C, C—Bool,
<:C, C-»Bool, >:C, C—Bool
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A.13 Latticetheory

Great est Lower Bound (T): trait

i ntroduces
< _: T, T — Bool
o , T —» T
asserts v x, y, z: T

(x my) <x
(x ny) <vy;
(z < x AzZ<y) =z < (xny)

Sem |l attice (T): trait
assunes Partial O der
i ncl udes Greatest Lower Bound
i ntroduces
— =T
U T, T—>T
asserts v x, y, z: T
X;
y ==y U X;
y ==y M X;
(x Uy);
(x <z Ay <z)=(xuy) <z
implies
Abel i anMonoid (U for o, — for unit),
Abel i anSemi group (1 for o)

X X X |
IAN = EA

Lattice (T): trait
assunes Partial O der
i ncludes Senilattice
introduces T: — T
asserts vV x: T
x < T
implies
Lattice (u for n, mfor u, T for —, — for T,
< for >, > for <, < for >, > for <)
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A.14 Group theory

Sem group: trait
introduces _ o _: T, T — T
asserts V x, y, z: T
(xoy) oz ==xo0(y o 2)
i mpl i es Associ ative

Leftldentity: trait

i ntroduces
o _ T, T =T
unit: — T

asserts vV x: T
unit o x == x

Rightldentity: trait

i ntroduces
o _ T, T =T
unit: — T

asserts vV x: T
X o unit ==

Identity: trait
includes Leftldentity, Rightldentity

Monoi d: trait

i ntroduces
o _ T, T->T
unit: — T

asserts V x, y, z: T
(X oy) oz ==xo0(y o 2);
unit o x == Xx;
X o unit == x

i mplies Sem group, ldentity

Leftlnverse: trait
assunmes Leftldentity

introduces __ "% T - T
asserts vV x: T
(x™1) o x ==unit
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Ri ghtl nverse: trait
assunmes Rightldentity

introduces __ "% T - T
asserts vV x: T
X o (x71) == unit

Inverse: trait
assunmes ldentity, Sem group
i ncl udes Leftlnverse, Rightlnverse
implies
Invol utive (__~* for op)
vV x, y: T
unit—! == unit;
(x oy)™t==(y™) o (x7h

G oup: trait

i ntroduces
o _ T, T->T
unit: — T
__11 T—-T

asserts V x, vy, z: T
(X oy) oz ==Xxo0(y o 2);
unit o x == Xx;
(x™1) o x == unit;

i npl i es Monoid, |nverse

Abelian: trait

introduces __ o __: T, T =T
asserts VvV x, y: T
X oy ==Y oX

i mplies Commutative (T for Range)

Abel i anSemi group: trait
i ncl udes Abel i an, Sem group
implies AC

Abel i anMbnoi d: trait
i ncl udes Abel i an, Mnoid

Abel i anGroup: trait
i ncl udes Abelian, G oup
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www.manharaa.com



200 A.14. Group theory

LeftDistributive (+, *, T): trait
i ntroduces
I T
asserts VvV x, vy, z
X * (y +2z) ==(x*y) +(x*2z)
RightDistributive (+, *, T): trait
i ntroduces
L, T, ToT

as;rEVx, y, z: T
(y +2) *x==(y *x) +(z*x)

Distributive (+, *, T): trait
includes LeftDistributive, RightD stributive

T—>T
T

Ring: trait
i ncl udes
Abel i anGoup (+ for o, O for unit, -__ for 1,
Sem group (* for o),
Distributive (+, *, T)

RingWthUnit: trait
i ncludes Ring, Mnoid (* for o, 1 for unit)

Field: trait
i ncl udes
Ri ngWt hUni t,
Abelian (* for o)
introduces "% T - T

asserts vV x: T
X #0=x* (xY) =1
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A.15 Number theory

This section presents a series of traits dealing with operators on whole
numbers. The following section deals with operators on rational and
floating point numbers.

DATA TYPES

Natural (N): trait
% The usual operators on the natural nunbers,
% starting fromO.
i ncl udes
ArithOps (N),
Deci mal Literal s,
Exponenti ation (N),

M nMax (N),
Total Order (N)
i ntroduces
6 _ N N—- N
asserts
N generated by 0, succ
vV x, y: N
succ(x) # 0;
succ(x) = succ(y) ==X = VY;
X < succ(Xx);
0 6 x ==0;
X & 0 == x;
succ(x) 6 succ(y) ==x 6 VY
i mplies
Nat ur al Or der
N generated by 0, 1, +
vV x, y: N
X 6 X == ;

x <y=x6oy =0
converts 1. —N, +, &, *, div, nod,
**oomn, max, <, >, <, >
exenpting V x: N

div(x, 0), mod(x, 0)
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Positive (P): trait
% Basi c operators on natural nunbers,
% starting froml
i ncludes DecinalLiterals (P for N), Total Order (P)
i ntroduces
1. —- P
succ: P — P
4+, _* P PP
asserts
P generated by 1, succ
vV Xx, yi: P
X + 1 == succ(x);
X + succ(y) == succ(x + y);
X*1l == X;
x*succ(y) == x + (x*y);
X < succ(x)
i mplies
Natural Order (P for N, 1 for 0)
P generated by 1, +
converts +, *, <, >, <, >
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IntCycle (first, last, N): trait
% A finite subrange of the integers that includes O,
% and wraps at succ(l ast)
i ncl udes
ArithOps (N),
Deci mal Literal s,
M nMax (N),
Total Order (N)
i ntroduces
first, last: — N
pred, -__, abs: N — N
- N N—N
asserts
N generated by 0, succ
vV x, y: N
succ(last) == first;
pred(succ(x)) == x;
succ(pred(x)) == x;
-0 == 0;
-succ(x) == pred(-x);
abs(x) ==if x < 0 then -x else x;
X -y =x+(-y);
X # last = x < succ(x)
i mplies
Distributive (+, *, N,
RingWthUnit (N for T)
N generated by 0, pred
vV x: N
pred(first) == 1last;
first < x;
x < last;
-(-X) == X
converts
pred, -__:N-N, abs, - N, N—=N,
1: =N, + *, max, mn, <, >, <, >
Si gnedl nt (maxSigned, N): trait
% Typi cal machine arithnetic, signed conplenent.
i ncludes IntCycle (m nSigned, maxSi gned, N)
asserts equations
succ(m nSi gned) == - maxSi gned
i mpl i es equations
m nSi gned + naxSi gned == -1;
abs(m nSi gned) == m nSi gned
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Unsi gnedl nt (maxUnsigned, N): trait
% Typi cal machi ne arithnetic, unsigned.
i ncludes IntCycle (0, maxUnsigned, N)

ASSUMPTIONS AND IMPLICATIONS

Enuner abl e requiresonly that each value of sort Nmust be reachabl e by
applyingsucc to 0 afinitenumber of times. | nf i ni t e requiresthat the
values yielded by succ are al distinct. The inclusion of Tot al O der

inNat ur al Or der ensuresthat succ( x) isaways greater than x, and
hence that there are infinitely many distinct values of sort N.

Enunmerable (N): trait
i ntroduces
0. — N
succ: N — N
asserts
N generated by 0, succ

Infinite (N: trait
i ntroduces
0. — N
succ: N — N
asserts V x, y: N
succ(x) # 0;
succ(x) = succ(y) ==x =y

Natural Order (N): trait
% The natural nunmbers with an ordering
i ncl udes
Enunerabl e (N),
Total Order (N)
asserts Vv x: N
X < succ(x)

i mplies
Infinite (N)
vV x, y: N
0 < x;
X < succ(y) ==x < v,
succ(x) < succ(y) ==x < Yy

converts <, >, <, >
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OPERATOR DEFINITIONS
Addition (N): trait
% Define the operator + in ternms of 0 and succ
i ncl udes AbelianMonoid(+ for o, 0 for unit, Nfor T)
i ntroduces
0: — N
succ: N — N
_+ ¢ N, N— N
asserts Vv x, y: N
X + 0 == x;
X + succ(y) == succ(x + vy)

Mul tiplication (N: trait
% Define the operator * in terms of 0, succ, and +
i ncl udes
Abel i anMonoid (* for o, 1 for unit, Nfor T),
Addition (N)
i ntroduces
1. — N
_* N N—=N
asserts Vv x, y: N
1 == succ(0);
X * 0 == 0;
X * succ(y) == x + (X *vy)

ArithCps (N): trait
% Defines operators div and nod relative to + and *
% for positive denom nators
assunes Total Order (N
i ncludes Multiplication (N)
i ntroduces
div, nmod: N, N—- N
asserts Vv x, y: N
y >0
= (0 < nmod(x, y)
A nmod(x, y) <Yy
A (mod(x, y) + (div(x, y) *y)) = x)
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Exponentiation (T): trait
% Repeatedly apply an infix * operator
assumes
Enunerabl e (N),
Monoid (* for o, 1 for unit)

introduces __ ** : T, N—> T
asserts v x: T, y: N

X**0 == 1,

x**succ(y) == x * (x**y)
implies V x: T

x**succ(0) == x

I nt eger AndNatural (Int, N: trait
% Conver sions between Int’'s and N's
i ncl udes

I nteger (Int),
Nat ural (N)
i ntroduces
int: N— Int
nat: Int — N
asserts v n: N
int(0) == 0;
i nt(succ(n)) == succ(int(n));
nat (int(n)) ==

I nt eger AndPositive (Int, P): trait
% Conver si ons between Int’s and P's

i ncl udes
I nteger (Int),
Positive (P)

i ntroduces

int: P — Int
pos: Int — P
asserts vV p: P
int(1) == 1;
int(succ(p)) == succ(int(p));
pos(int(p)) ==
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A.16 Floating point arithmetic

Thetrait Rat i onal providesenough of atheory of rational arithmetic to

specify the properties of floating point arithmetic.

Rational : trait
% For use in the trait FloatingPoint.
i ncl udes
Exponentiation (Q for T, P for N),
I nt eger AndPositive (Int, P),

M nMax (Q,
Total Order (Q
i ntroduces
_/__:Int, P—=Q
0, 1. - Q
-, __ 71 abs: Q- Q
_t _*_! P _/_: Q! Q_> Q
asserts
Q generated by _/_:Int,P—Q
Vi, i1, i2: Int, p, pl, p2, p3: P, g, g1, gq2: Q
O/p == 0;
int(p)/p == 1;
i1/pl =i2/p2==1i1*int(p2) =i2 * int(pl);
-(i/p) == (-i)/p;

(int(pl)/p2)~t ==int(p2)/pl;
(-a)~t==-(q7h;

abs(i/p) == abs(i)/p;

(il/p) + (i2/p) ==(i1 +i2)/p;

(1d/pl) * (i2/p2) == (il *i2)/(pl * p2);
ql - 92 ==ql + (-92);

ql/g2 ==ql * (g927%);

(id/p) < (i2/p) ==il < i2
i mplies
AC (+, Q,
AC (*, Q,
Field (Qfor T)
Vi, i1, i2: Int, p, pl, p2, p3: P, g0 Q
q+ 0==aq;
-q == - q'
(il/p) - (i2/p) ==(il - i2)/p;
q* O::O;
q* 1==aq;
q~t == 1/g;

(i/pl)/(int(p2)/p3) == (i * int(p3))/(pl * p2)
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converts
0:.—-Q 1.-Q -:Q —Q -1 abs: Q —Q
+: Q! Q_>Q! ':Q! Q_>Q! * Q! Q_>Q! /:Q! Q_>Qr
**:Q P—Q nmin:Q Q—-Q nmax:Q Q—Q
<: Q Q—Bool, >:Q Q—Bool,
<:Q Q—Bool, >:Q Q—Bool
exenpting 0°1

The following traits define a theory of floating point arithmetic that is
weak enough to be satisfied by many floating point implementations, yet
strong enough to allow reasoning about floating point arithmetic. Careful
analysis of any particular floating point system should lead to tighter
bounds on the errors due to inexact arithmetic, and might even lead to
some useful identities, suchas (f1 + f2) + fa= fi+ (f2 + fa3).

The basic idea is this: Every floating point number exactly represents
somerationa number, returned by the operator r at i onal . Each floating
point operator approximates a corresponding rational operator, but cannot
always be be exact. The exact answer may not even be representable.
Furthermore, floating point arithmetic does not generaly guarantee to
produce even the closest representable value. So each floating point
operator may introduce an error that depends on:

¢ the magnitude of the operand(s),
¢ the magnitude of the exact and approximate results,
¢ properties of the floating point representation used.

Three parameters characterize the representation: smal | est and
| ar gest denote the least and the greatest representable positive values,
respectively, and gap, the largest relative difference between any pair of
consecutive representable positive values. FPAssunpt i ons specifies
relations that must hold among these parameters and the operator
rati onal (which convertsfloating point numbersto their exact rationa
values) in order for Fl oat i ngPoi nt to characterize a valid floating
point number system.
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FPAssunpti ons (smallest, |argest,
gap, rational): trait
i ncl udes Rati onal
i ntroduces
smal | est, largest, gap: — Q
rational: F — Q
float: Q — F
0, 1. —- F
asserts VvV f: F
smal l est > O;
| argest > smallest;
rational (0) == 0;
rational (1) == 1;
rational (f) # 0 = abs(rational (f)) > snallest;
rational (f) < largest;
gap > O;
float(rational (f)) ==f;
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Thepredicateappr ox(f, g, t) comparestheresultf of afloating
point operation to the exact rational value q of that operation; the predicate
is true if the result is “close enough” to the exact value (i.e., within a
tolerancet ), or if the exact valueistoo big to be represented.

We have not axiomatized the properties of the IEEE standard’s non-
numeric floating point values (NaN'’s). We leave that as an exercise for
numerical analysts, in the expectation that an accurate characterization is
separable from the numerical properties. It might be more complex than
anything we have specified in this handbook.

Fl oati ngPoi nt (snallest, |argest,
gap, rational): trait
assunes FPAssunpti ons
i ncl udes
Rat i onal
Total Order (F)
i ntroduces
mg: F — Q
approx: F, Q Q — Bool
-__, abs, - F S F
o+, ., -, _l_tF F—-F
asserts
F generated by fl oat
vif, f1, f2: F, q, t: Q
fl < f2 ==rational (fl) < rational (f2);
mag(f) == abs(rational (f));
approx(f, g, t) ==
abs(q) < largest
= abs(rational (f) - Q)
< (smallest +
(gap*(mag(f) + abs(q) +1t)));
approx(-f, -rational (f), 0);
f # 0 = approx(f~% rational (f)~ 0);
approx(abs(f), mag(f), 0);
approx(f1 + f2, rational (f1) + rational (f2),
mag(f1l) + mag(f2));
approx(f1 * f2, rational (f1) * rational (f2), 0);
approx(f1 - f2, rational (f1) - rational (f2),
mag(f1l) + mag(f2));
f2 £0
= approx(fl1l/f2, rational (f1)/rational (f2), 0)
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Lexical Formsand Initialization Files

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of whichmay haveitsownlexical conventionsand capabilities. To conform
tolocal conventionsand to exploit locally available capabilities, character
and token classes are extensible and can betailored for particular purposes
by initializationfiles.

In this appendix we give the LSL and LCL initialization files used for
theexamplesinthisbook. We al so givethe | SO L atin codes used for typing
the special symbols appearing in specifications in this book.

The book was produced using IATeXwith aLarch stylefile. That allowed
us to type specifications using the 1SO Latin codes given here, and have
them appear in the text as special symbols.

LCL init file

coment Sym //

opChar R G)

sel ect Sym

synonym \'and /\
synonym \or \/
synonym \inplies =>
synonym \ mar ker -
synonym \eq ==
synonym \ neq =
synonym \ not !
synonym \ not not
synonym \ not -
synonym \pre -
synonym \ post

synonym \arrow ->
synonym \arrow \ra
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LSL init file

comment Sym

i dChar
opChar
si ngl eChar

openSym
cl oseSym
sel ect Sym

sinpleld

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

% Fol | owi ng

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

%

"1#$82@

[ { \<\langle
] } \>\rangle

\ bot \top

\ and /\
\ and &
\or \/
\or |
\inplies =>
\ not !

\ not not
\ not
\eq =
\ neq =

\ neq =
\arrow ->

\ mar ker

\ equal s ==
\forall forall
\ egsep ;

used for checking LCL

Bool bool

I nt int

I nt si gned_char

I nt unsi gned_char

I nt short _int

I nt I ong_i nt

I nt unsi gned_short _i nt
I nt unsi gned_i nt

I nt unsi gned_| ong_i nt
doubl e fl oat

doubl e | ong_doubl e

223
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SO Latin codes for special characters

— iswrittenas - >

< iswrittenas <=

> iswrittenas >=

# iswrittenas ~=

- iswrittenas ~

vV iswrittenas \ /

A iswrittenas /\

= iswrittenas =>

Y iswrittenas \ foral |
3 iswrittenas \ exi st's
* iswrittenas \ any

* iswrittenas \ *

* iswrittenas \ +

—1 jswrittenas \ i nv

( iswrittenas \ <

) iswrittenas \ >

€ iswrittenas \i n

¢ iswrittenas \ notin
N iswrittenas \ |

U iswrittenas \ U

C iswrittenas \ subset
C iswrittenas \ subset eq
D iswrittenas \ supset

D iswrittenas \ supset eq
- iswrittenas - |

F iswrittenas | -

|| iswrittenas | |

- iswrittenas \ cdot

o iswrittenas \circ

- iswrittenas \ pr ecat

F iswritten as \ post cat
L iswrittenas \ bot

T iswrittenas \ t op

M iswrittenas \ gl b

LI iswrittenas \ | ub

© iswrittenas \ om nus

o iswrittenas \ rel

X iswrittenas \ ti nmes
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Further Information and Tools

This appendix contains alist of currently available Larch tools.

Readers interested in keeping up with new devel opments should sub-
scribetothedectronicmailinglist] ar ch-i nt er est @r c. dec. com
Thislistisused for announcementsand queriesof general interest. Requests
tobeaddedto (or deleted from) thislist, aswell asmore specialized queries,
shouldbesenttol arch-i nt erest-request @rc. dec. com

All informationinthissectioniscurrent as of October 1992. An updated
version will bekept onlineon theinternet host gat ekeeper . dec. com
It will be available for anonymous ftp as

/ pub/ DEC/ Lar ch/ I nf or mati on. t ex

1. Id. Larch Shared Language Checker. Syntax and sort checks LSL
specifications. Translates LSL into Ip input. Contact: Stephen
Garland, MIT.

2. lcl. Syntax and type checker for LCL. Interfaces with Isl. Contact:
Stephen Garland, MIT.

3. Im3. Syntax and type checker for Modula-3 interface specifications
written in LM 3. Interfaces with Isl. Contact: Kevin Jones, DEC.

4. |p. Larch Prover. Proof checker for fragment of first-order logic with
equality. Contact: Stephen Garland, MIT.

5. gcil. Generic Concurrent Interface Language (GCIL) Checker.
Syntax and type checks GCIL specifications. Interfaces with Idl.
Contact: Jeannette Wing, CMU.

6. Penelope. Verification tool for Larch/Ada specifications and Ada
programs. Contact: M. Stillman, ORA.

7. Larch/Smalltalk Browser. Syntax and sort/type checker and
browser for Larch/Smalltalk and LSL specifications. Contact: Gary
Leavens, |SU.
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CONTACT ADDRESSES

MIT/LCS

Dr. Stephen J. Garland

M assachusetts I nstitute of Technology
Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139, USA
Internet:gar | and@cs. nmit. edu

DEC/SRC

Dr. James J. Horning

Dr. Kevin D. Jones

Digital Equipment Corporation

Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301-1044, USA

Internet: hor ni ng@r c. dec. com kj ones@r c. dec. com

ISU/DCS

Professor Gary Leavens

229 Atanasoff Hall

Department of ComputerScience

lowa State University

Ames, lowa 50011-1040, USA

Internet; | eavens@s. i ast at e. edu.

ORA

M. Stillman

Odyssey Research Associates
301A Harris B. Dates Drive
Ithaca, NY 14850-1313, USA.
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CMU/SCS

Professor Jeannette M. Wing

Carnegie Méellon University

School of Computer Science

Pittsburgh, PA 15213-3890, USA

Internet: Jeannett e. W ng@s. crmu. edu
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Appendix E
Classified Bibliography

This bibliography was started by Jeannette Wing and augmented by
Yang Meng Tan. It is available by anonymous f t p from Internet node
larch.lcs. mt.eduas/pub/larch-bib/larch-bib.tex.
Suggested additions for the online version should be sent to
yntan@cs. m t. edu. Full citationsfor all references are givenin the
next section.

Papers about Larch

CURRENT WORK

Reports about the current status of several Larch-related projects are
contained in [66].

LARCH LANGUAGES

Larch Interface Languages: generic [16, 53, 61, 88]; Ada[37]; C[26, 80];
C++[60]; CLU [86]; ML [93]; Modula-3 [55, 56, 57]; Smalltalk [17].
Larch and other methods: [95].

LARCH TOOLS

LP, the Larch proof assistant: [30]; a beginner’s strategy guide [81]; an
extension [83]; [5, 11, 18, 19, 76, 84].
For LSL [7, 59]; for LCL [26]; for LM3[57].

Example specifications

Apple MAC Toolbox: [13].

Avalon built-in classes, examples (queue, directory, counter): [92], [89],
and [61].

Display: [43].

Finite element analysislibrary: [3, 1].

Garbage collection: [22].
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|OStreams: [55].

Larch/Ada: [15, 37].

Library: [87].

Miro languages and editor: [94, 99].

Thread synchronization primitives: [6, 69].

Using specifications to search software libraries: [73].

Proofsusing LP

Adaprograms: [38]

Avaon queue example: [92, 35, 91].
Circuit examples: [18, 32, 78, 75, 79].
Mathematical Theorems: [65].
Temporal Logic of Actions: [25].

229

www.manharaa.com



References

* Entries marked with an asterisk have been superseded by material in this
book; they are included for historical reference only.

[1] JW. Baugh, J. “Forma specification of engineering analysis
programs,” Expert Systems for Scientific Computing, E.N. Houstis,
JR. Rice, and R. Vichnevetsky (eds.), North-Holland, 1992.

[2] John W. Baugh, Jr. “Is engineering software amenable to formal
specification?,” in [66].

[3] JW. Baugh, J., and D.R. Rehak. Computational Abstractions
for Finite Element Programming, TR 89-182, Dept. of Civil
Engineering, Carnegie Mellon University, 1989.

[4] Michel Bidoit. Pluss, un langage pour le développement de
spécifications algébriques modulaires. These d’ Etat, Université de
Paris-Sud, Orsay, May 1989.

[5] Michel Bidoit and Rolf Hennicker, “How to prove observational
theoremswith LP” in [66].

[6] A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. “Synchro-
nization primitives for a multiprocessor: a formal specification.”
Operating Systems Review 21(5), Nov. 1987. Revised version in
[69].

[7] Robert H. Bourdeau and Betty H.C. Cheng. “An Object-oriented
Toolkit for Constructing Specification Editors,” Proc. COMP-
SAC'92: Computer Software and Applications Conf., Sept. 1992.

[8] Robert S. Boyer and JS. Moore. A Computational Logic, Academic
Press, 1979.

www.manaraa.com



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

References 231

Robert S. Boyer and JS. Moore. A Computational Logic Handbook,
Academic Press, 1988.

Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, 1975.

Manfred Broy. Experiences with Software Specification and Veri-
fication Using LP, the Larch Proof Assistant, TR 93, DEC/SRC,
Oct. 1992.

R.M. Burstall and J.A. Goguen. “Semantics of CLEAR, a speci-
fication language,” Proc. Advanced Course on Abstract Software
Soecifications, D. Bjorner (ed.), Springer-Verlag, LNCS 86, 1980.

C.T. Burton, S.J. Cook, S. Gikas, JR. Rowson, and S.T. Som-
merville.“ Specifying the Apple M acintosh tool box event manager,”
Formal Aspects of Computing 1(2), 1989.

Karl-Heinz Buth. “ Using SOS definitionsin term rewriting proofs,”
in[66].

SR. Cardenas and H. Oktaba. Formal Specification in Larch
Case Sudy: Text Manager. Interface Specification, Implementation,
in Ada and Validation of Implementation, TR 511, Instituto
de Investigaciones en Matematicas Aplicadas y en Sistemas,
Universidad Nacional Autonoma de Mexico, 1988.

Jolly Chen. The Larch/Generic Interface Language, S.B. Thesis,
Dept. of Electrical Engineering and Computer Science, MIT, 1989.

Yoonsik Cheon. Larch/Smalltalk: A Specification Language for
Smalltalk, M.Sc. Thesis, lowa State University, 1991.

Boutheina Chetali and Pierre Lescanne. “An exercise in LP: the
proof of a nonrestoring division circuit,” in [66].

Christine Choppy and Michel Bidoit. “Integrating ASSPEGIQUE
andLP” in[66].

O.-J. Dahl, D.F. Langmyhr, and O. Owe. Preliminary Report on
the Specification and Programming Language ABEL, Research
Report 106, Institute of Informatics, University of Oslo, Norway,
1986.

www.manaraa.com



232 References

[21] Ole-Johan Dahl. \erifiable Programming, Prentice Hall Interna-
tiona Seriesin Computer Science, 1992.

[22] David L. Detlefs. Concurrent, Atomic Garbage Collection, Ph.D.
Thesis, Dept. of Computer Science, Carnegie Mellon University,
TR CS-90-177, Oct. 1990.

[23] H.-D. Ehrich. “Extensions and implementations of abstract data
type specifications,” Proc. Mathematical Foundations of Computer
Science, Zakopane, Sept. 1978. Springer-Verlag, LNCS 64.

[24] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification
1: Equations and Initial Semantics, EATCS Monographs on
Theoretical Computer Science, vol. 6, Springer-Verlag, 1985.

[25] Urban Engberg, Peter Grenning, and Leslie Lamport. “Mechanical
verification of concurrent systems with TLA,” Proc. Workshop on
Computer Aided Verification, 1992. Revised version in [66].

[26] G. Feldman and J. Wild. “The DECspec project: tools for
Larch/C,” Proc. Fifth Int. Workshop on Computer-Aided Software
Engineering, Montreal, Jul. 1992. Revised version in [66].

[27] Stephen J. Garland and John V. Guttag. “Inductive methods for
reasoning about abstract data types,” Proc. 15th ACM Symp.
Principles of Programming Languages, Jan. 1988.

[28] Stephen J. Garland and John V. Guttag. “An overview of LP, the
Larch Prover,” Proc. Third Intl. Conf. Rewriting Techniques and
Applications, Chapel Hill, 1989. Springer-Verlag, LNCS 355.

[29] * Stephen J. Garland and John V. Guttag. “Using LP to debug
specifications,” Proc. |FIP Work. Conf. Programming Conceptsand
Methods, Tiberias, Apr. 1990. North-Holland.

[30] Stephen J. Garland and John V. Guttag. A Guide to LP, The Larch
Prover, TR 82, DEC/SRC, Dec. 1991.

[31] * Stephen J. Garland, John V. Guttag, and James J. Horning.
“Debugging Larch Shared Language specifications,” |IEEE Trans.
Software Engineering 16(9), Sept. 1990.

www.manaraa.com



[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

References 233

S.J. Garland, J.V. Guttag, and J. Staunstrup. “Verification of VLS
circuits using LR Proc. IFIP Work. Conf. Fusion of Hardware
Design and \erification, North Holland, 1988.

Narain Gehani and Andrew McGettrick (eds.). Software Specifica-
tion Techniques, Addison-Wesley, 1986.

JA. Goguen, JW. Thatcher, and E.G. Wagner. “An initial algebra
approach to the specification, correctness and implementation of
abstract data types,” Current Trends in Programming Methodol ogy
IV: Data Structuring, R. Yeh (ed.), Prentice-Hall, 1978.

C. Gong and JM. Wing. Raw Code, Specification, and Proofs of
the Aval on Queue Example, Carnegie Mellon University, TR CMU-
CS-89-172, Aug. 1989.

David Gries. The Science of Programming, Springer-Verlag, 1981.

David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada” IEEE Trans. Software Engineering 16(9),
Sept. 1990.

David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada programs,” in[66].

John V. Guttag. “ Dyadic specification and its Impact on reliability,”
in Three Approaches to Reliable Software: Language Design
Dyadic Specification, Complementary Semantics, J.E. Donahue,
J.D. Gannon, J.V. Guttag, and J.J. Horning, University of Toronto,
TR CSRG-45, Dec. 1974.

John V. Guttag. The Specification and Application to Programming
of Abstract Data Types, Ph.D. Thesis, Dept. of Computer Science,
University of Toronto, 1975.

John Guttag. “Noteson typeabstraction,” Proc. Conf. Specifications
of Reliable Software, 1979. Reprinted in [33].

JV. Guttag and JJ. Horning. “The Algebraic Specification of
Abstract Data Types,” Acta Informatica 10(1), 1978.

John Guttag and J.J. Horning. “Formal Specification as a Design
Tool,” Seventh ACM Symp. Principles of Programming Languages,
Las Vegas, Jan. 1980. Reprinted in [33].

www.manaraa.com



234 References

[44] * J.V. Guttag and J.J. Horning. “ An Introduction to the L arch Shared
Language,” Proc. IFIP Ninth World Computer Congress, Paris,
Sept. 1983.

[45] * JV. Guttag and J.J. Horning. “Report on the Larch Shared
Language,” Science of Computer Programming 6(2), Mar. 1986.

[46] * JV. Guttag and JJ. Horning. “A Larch Shared Language
Handbook,” Science of Computer Programming 6(2) Mar. 1986.

[47] * JV. Guttag and J.J. Horning. LCL: A Larch Interface Language
for C, TR 74, DEC/SRC, Jul. 1991.

[48] * John V. Guttag and James J. Horning. “A Tutoria on Larch
and LCL, a Larch/C Interface Language,” Proc. VDM91: Formal
Software Development Methods, S. Prehn and W.J. Toetenel (eds.),
Delft, Oct. 1991. Springer-Verlag, LNCS 551.

[49] * John V. Guttag, James J. Horning, and Andrés Modet. Report
on the Larch Shared Language: Version 2.3, TR 58, DEC/SRC,
Apr. 1990.

[50] * John V. Guttag, James J. Horning, and Jeannette M. Wing. “The
Larch Family of Specification Languages,” |IEEE Software 2(5),
1985.

[51] * JV. Guittag, J.J. Horning, and JM. Wing. Larch in Five Easy
Pieces, TR 5, DEC/SRC, Jul. 1985.

[52] Samuel P. Harbison. Modula-3, Prentice Hall, 1992.

[53] David Hinman. On the Design of Larch Interface Languages, SM.
Thesis, Dept. of Electrical Engineering and Computer Science, MIT,
Jan. 1987.

[54] * J.J. Horning. “Combining Algebraic and Predicative Specifica-
tions in Larch,” Proc. Intl. Joint Conf. on Theory and Practice
of Software Development, TAPSOFT, Berlin, Mar. 1985. Springer-
Verlag, LNCS 186.

[55] Kevin D. Jones. LM3: A Larch Interface Language for Modula-
3: A Definition and Introduction: Version 1.0, TR 72, DEC/SRC,
Jun. 1991.

www.manaraa.com



[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

References 235

Kevin D. Jones. “A semantics for a Larch/Modula-3 interface
language,” in [66].

Kevin D. Jones. LM3 Reference Manual, (in preparation).

Donald E. Knuth and Peter B. Bendix. “Simple word problemsin
universal algebras,” Computational Problemsin Abstract Algebra,
John Leech (ed.), Pergamon Press, Oxford, 1970.

Michad R. Laux, Robert H. Bourdeau, and Betty H.C. Cheng.
An Integrated Environment Supporting the Reuse of Formal
Soecifications, Michigan State University, Dept. of Computer
Science, TR MSU-CPS-ACS-70, Sept. 1992.

Gay T. Leavens and Yoonsik Cheon. “Preliminary design of
Larch/C++,” in[66].

Richard Allen Lerner. Specifying Objects of Concurrent Systems,
Ph.D. Thesis, Dept. of Computer Science, Carnegie Mellon
University, TR CS-91-131, May 1991.

Pierre Lescanne. “Computer experiments with the REVE term
rewriting system generator,” Proc. Tenth ACM Symp. Principles
of Programming Languages, 1983.

Barbara Liskov and John Guttag. Abstraction and Specification in
Program Devel opment, MIT EECS Series, MIT Press, 1986.

D.A. McAllester. Ontic: A Knowledge Representation System for
Mathematics, MIT Press.

U. Martinand T. Nipkow. “ Automating Squiggol,” Proc. |FIP Wbrk.
Conf. Programming Concepts and Methods, Tiberias, Apr. 1990.
North-Holland.

U. Martin and JM. Wing. Proc. First Intl. Workshop on Larch,
Dedham, Jul. 1992, Springer-Verlag.

Niels Mellergaard and Jergen A. Staunstrup. “Generating proof
obligationsfor circuits,” in [66].

James H. Morris, Jr. “Types are Not Sets” First ACM Symp.
Principles of Programming Languages, Boston, Oct. 1973.

www.manaraa.com



236 References

[69] Greg Nelson (ed.). Systems Programming with Modula-3, Prentice
Hall, 1991.

[70] D.L. Parnas. “Information distribution aspects of design methodol-
ogy,” Proc. IFIP Congress 71, Ljubljana, Aug. 1971.

[71] Laurence C. Paulson. Logic and Computation: Interactive Proof
with Cambridge LCF, Cambridge University Press, 1987.

[72] Gerald E. Peterson and Mark E. Stickel. “Complete sets of
reductions for some equational theories,” J. ACM 28:2, Apr. 1981.

[73] EugeneJ. Rollinsand Jeannette M. Wing. “ Specifications as search
keys for software libraries,” Proc. Intl. Conf. Logic Programming,
Paris, Jun. 1991.

[74] Donad Sannella and Andrzej Tarlecki. “On observational equiva-
lence and a gebraic specification,” Proc. Intl. Joint Conf. Theory and
Practice of Software Development, TAPSOFT, Berlin, Mar. 1985.
Springer-Verlag, LNCS 185.

[75] James B. Saxe, Stephen J. Garland, John V. Guttag, and James
J. Horning. “Using Transformations and Verification in Circuit
Design,” in [66].

[76] E. A. Scott and K. J. Norrie. “Using LP to study the language PL,”
in[66].

[77] Joseph R. Shoenfield. Mathematical Logic, Addison-Wesley, 1967.

[78] J. Staunstrup, SJ. Garland, and J.V. Guttag. “Compositional
verification of VLS circuits,” Proc. Intl. Workshop on Automatic
\erification Methods for Finite Sate Systems, Grenoble, Jun. 1989,
Springer-Verlag, LNCS 407.

[79] Jorgen Staunstrup, Stephen J. Garland, and John V. Guttag.
“Mechanized verification of circuit descriptions using the Larch
Prover,” Proc. IFIP Work. Conf. Theorem Proversin Circuit Design:
Theory, Practice, and Experience, Nijmegen, Jun. 1992. North-
Holland.

[80] Yang Meng Tan. “Semantic analysis of Larch interface specifica-
tions,” in[66].

www.manaraa.com



[81]

[82]

[83]

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

References 237

David S. Taylor. A Beginner’s Strategy Guide to the Larch Prover,
S.B. Thesis, Dept. of Electrical Engineering and Computer Science,
MIT, May 1990.

Mark T. Vandevoorde. “Optimizing programs with partial specifi-
cations,” in [66].

Mary A. Vogt. Extension of the Larch Prover by a Method of
Inference Using Linear Arithmetic, S.B. Thesis, Dept. of Electrica
Engineering and Computer Science, MIT, Sept. 1990.

Frederic Voisin. “A new front-end for the Larch Prover,” in [66].

M. Wand. “Final algebra semantics and data type extensions,”
Journal of Computer and System Sciences, Aug. 1979.

Jeannette Marie Wing. A Two-Tiered Approach to Specifying
Programs, Ph.D. Thesis, Dept. of Electrica Engineering and
Computer Science, MIT, TR MIT/LCS/TR-299, May 1983.

Jeannette M. Wing. “A Larch specification of the library problem,”
Proc. Fourth Int. Workshop on Software Specification and Design,
Monterey, Apr. 1987.

Jeannette M. Wing. “Writing Larch Interface Language Specifica-
tions,” ACM Trans. Programming Languages and Systems 9(1),
Jan. 1987.

JM. Wing. “Specifying recoverable objects,” Proc. Sxth Annual
Northwest Software Quality Conf., Portland, Sept. 1990.

JM. Wing. “Using Larch to Specify Avalon/C++ Objects,” Proc.
Intl. Joint Conf. Theory and Practice of Software Development,
TAPSOFT, Barcelona, Mar. 1989. Springer-Verlag, LNCS 352.
Revised version in [90]

Jeannette M. Wing and Chun Gong. Machine-Assisted Proofs
of Properties of Avalon Programs, Carnegie Mellon University,
TR CMU-CS-89-171, Aug. 1989.

Jeannette M. Wing and Chun Gong. “Experience with the Larch
Prover,” Proc. ACM Intl. Workshop on Formal Methodsin Software
Devel opment, May 1990.

www.manaraa.com



238 References

[93] JM. Wing, Eugene Rollins, and Amy Moormann Zaremski.
“Thoughtson a Larch/ML and a new application for LB in [66].

[94] Jeannette M. Wing and Amy Moormann Zaremski. “A formal
specification of avisual languageeditor,” Proc. Sxth Intl. Workshop
on Software Specification and Design, Como, Oct. 1991.

[95] Jeannette M. Wing and A. Moormann Zaremski. “Unintrusive
ways to integrate formal specifications in practice,” Proc. VDM91:
Formal Software Devel opment Methods, S. Prehn and W.J. Toetendl
(eds.), Delft, Oct. 1991. Springer-Verlag, LNCS 551.

[96] M. Wirsing. Algebraic Specification, Technical Report MIP-8914,
University of Passau, Germany, 1989.

[97] Katherine Anne Yelick. Using Abstractions in Explicitly Paralld
Programs, Ph.D. Thesis, Dept. of Electrica Engineering and
Computer Science, MIT, TR MIT/LCSTR-507, Jul. 1990.

[98] KatherineA. Yelick and Stephen J. Garland. “A parallel completion
procedure for term rewriting systems,” Proc. 11th Intl. Conf.
Automated Deduction, Saratoga Springs, Jun. 1992. Springer-
Verlag, LNCS 607.

[99] Amy Moormann Zaremski. A Larch Specification of theMiro Editor,
Carnegie Méellon University, TR CMU-CS-91-111, Feb. 1991.

www.manaraa.com



| ndex

" (post-state value), 58, 61
" (pre-state value), 58, 61, 76
1x(inC), 60

— (in signature), 8, 18, 36
=, 36, 47

==, 36, 75, 92

£, 47

[1 (LPbox), 33,139

[1 (inC), 58,60

<> (LP diamond), 33, 139
= (logical implies), 10

d (there exists), 10

Y (for dl), 10, 11

< (logica equivalence), 9
- (logical not), 10

V (logical or), 10

A (logical and), 10

Abel i an, 199
Abel i anG oup, 199
Abel i anMbnoi d, 199
Abel i anSem gr oup, 199
abstract field, 112
abstract invariant, 29, 78, 80
abstract type, 34, 15
assignment, 75
collection of related opera-
tions, 4, 21, 72, 92
constructor, 54
creation and finalization, 75
implementation, 4, 26-29,
72

in C, 58-60
in Modula-3, 104, 110, 119
reasoning about, 29
type checking, 59, 72
abstract value, 110
abstraction function, 2629
abstraction relation, 112
abstractions, programming with,
1-5
AC, 191
action, 104
Addi ti on, 205
addresses of Larch contacts, 225
adequate definition, 54, 122
algebra, 37
algebraic specification, 18, 35
aliasing, 77
ALL, 110
announcements, 225
Anti synmmetri c, 192
Arit hOps, 205
array, 60, 67, 68
Arrayl, 184
Array2, 184
ArraySlice2, 184
asserts, 20
assignment, abstract type, 75
Associ ati ve, 191
associativity, 55, 131
assunes
discharge of, 125, 127, 137,
146

www.manaraa.com



240 Index

examples, 51, 55, 78
purpose, 44, 124
vs.i ncl udes, 46, 125
assumptions, 44-47
Asynmmetri c, 192
atomic action, 116
auxiliary specifications, 17, 57,
77

backward inference, 134
Bag, 169

bag, 86

BagO, 45

Bagl, 46

Bag2, 47

BagBasi cs, 168

based on, 21, 58, 104

basic value, 59

basis of induction, 28, 38, 135
Bi naryTr ee, 182
binding, 10

bool, type, 68

Bool ean, 161

bound and free variables, 10
break, 96

built-in operator, 36, 4749

C and Modula-3, 102
.cfile, 57
cal by value, 60
Cart esi anVi ew, 151
case anaysis, 134
character set, 33, 222
checking
dlocation failure, 77
assumption, 124-125, 127,
137
avoidance of, 83
based onredundancy, 18, 31,
43-44, 152

completeness, 122
composition, 124-125
consistency, 127, 145
conversion, 123-124
defensive, 80, 99
examples, 146-152
generators, 142
hardware design, 30
implementation, 86
implication, 122125, 137
interface specification, 17
LCLint, 57, 72, 80, 83, 92
LSL gpecification, 17, 43,
121-153
made easier, 128
of book, 62
precondition, 76
proof script, 30, 31
sort-, 18, 58, 61
specification, 7,17, 121
specifications, iii
theory containment, 137143
type-, 7, 18, 72, 104, 121,
125

understanding, 43, 80, 122

chemistry, 7

chess, 7

Choi ceBag, 176

Choi ceSet , 176

cl ai ns, 80, 83

client, 5, 22, 25, 57, 103

Coer ceCont ai ner, 179

combining
abstractions, 3
implementations, 3
solutions, 1, 2
specifications, 18, 39, 124

comments, 62

Comut ati ve, 191

www.manaraa.com



commutativity, 55, 131
comparison, of abstract typevalue,
75, 92
completeness, 43, 54, 122
checking, 122
of deduction system, 12
of theory, 11
completion (Knuth Bendix), 139
completion (Knuth-Bendix), 134,
142, 145-146
ConposeMaps, 185
composition of actions, 116
concrete value, 110
concurrency, 116
Condi ti onal , 162
conjunction, 10
conseguences, 12-13
consistency, 12, 37, 43, 122, 127
checking, 126, 145-146
constants
inC, 57, 63,66, 70
inLM3, 105
inLSL, 49
in Modula-3, 104, 106, 107
logical, 9
mathematical, 21
new, 135, 139, 142
contact addresses, 225
Cont ai ner, 52,177
container traits, 166-181
contradiction, 135
control object, 62
conventions, 4, 62, 75
lexical and typographic, 33—
34, 222-224
converts
checking, 142-143
purpose, 43
semantics, 43, 44, 123

Index 241

Coor di nat e, 146
correctness

of implementation, 4, 7, 25,

59, 101

of specification, 7, 41, 121
crash, 68
create function, 75
critical pairs, 134, 138, 145
cstring, 63,64

data abstraction, 34
datatypeinduction, 28, 29, 83
dbase implementation, 100
dbase.c, 217221
dbase.h, 217
debugging
LSL specifications, 121-153
proof, 30
Deci nmal Literal s, 164
declaration
inC, 57,92
inLCL, 80
inLP, 129130
inLSL, 18, 31, 36, 48, 146
in Modula-3, 102-104, 106,
110
decomposition, 1-3
deduction
rule, 12, 38, 132-134, 141
system, 12
default proof methods, 136
defensive programming, 68, 80,
99
definitional specifications, 5
Deque, 172
Deri vedOr der s, 195
design
decision, 7, 70
of proof, 30
of software, 14

www.manaraa.com



242 Index

determinism, 67, 77
disambiguation, 48, 49
discharging
assumption, 46, 101, 125,
127, 137
proof obligation, 127
subgodl, 31
disjunction, 10
Di spl ayabl e, 146
distinguished sort, 54
D stributive, 200
domain, 8, 18, 36
driver program, 83

effective deduction system, 12
efficiency, 76, 77
El enent Test , 180
empset.c, 215217
empset.h, 214
ENSURES, 105, 109
ensur es, 22,62, 67, 68
Enuner abl e, 204
Enuner ati on, 165
enuner ati on, 49
enumeration type, 107
environment, 58
Equal i ty, 193
equation, 9, 36

checking, 137-141

inLP, 130131
equationa specification, 35-37
equational theory, 37, 130, 145
Equi val ence, 193
equi val ence, 41
equi val encel, 40
equi val ence2, 40
erc.c, 212-214
erc.h, 211
error

avoidance, 57

in specification, 43
examples

LCL, 22, 62-101

LM3, 22, 105-120

LSL, 18,40-42,51-55, 157—

210
checking, 146-152

proof, 31-33, 146-152
EXCEPT, 108, 109
exception, 109
exenpti ng, 44,54, 55, 124
existentia quantifier (4), 10
Exponenti ati on, 206
exposed fields, 113
exposed type, 21

inC, 58, 59, 66, 72, 80, 100

in Modula-3, 103, 106, 109
extension operators, 54
ext ern, 67,92

failure
of proof, 136, 147, 149-150,
152
of storage alocation, 77
Fi el d, 200
field specification, 119
field (in C), 59
fina algebra, 37
Fi ni t eMap, 185
first-order logic, 8-13
first-order theory, 20, 37
FI oat i ngPoi nt, 210
formal method, 155, 156
formal parameter, 58, 60, 61, 66,
105
LS., 41
formal specification, 67
formalization, caution, 155-156
formula, 9
forward inference, 133, 145

www.manaraa.com



FPAssunpt i ons, 209
free and bound variables, 10
fresh, 75-77
function (in C)
prototype, 57, 66, 70, 72, 80
specification, C, 61-62
Functi onal , 192

gcce, 62

GCIL, 225

generated by, 37,51, 132
checking, 142

generator set, 54

generators, 142

generic
interface, 110, 112
operator, 51, 55

global state
inLM3, 104

global variable, 80, 104

G aph, 190

G eat est Lower Bound, 197

G oup, 199

group theory traits, 198-200

.hfile 57,70
handbook, 63

errors, 159

LSL, 157-210

online, 158, 159
hiding, 5, 21, 110, 113, 116
hierarchy, 3
history, iii—iv

. i 3 file 102

| denpot ent , 191

I dentity, 198

i f__then_el se__, 20, 36, 37,
47,162

. i gfile 102

Index 243

immutable type, 59, 75, 80, 86
immutable value, 105
implementation

bias, 5

dependency, 72

notes, 99

of abstract type, 4, 26-29,

59, 72,99, 112
of function, 72, 92, 101

of interface, 57, 92, 100-102

of iterator, 96, 99
of procedure, 22, 25, 29
of software, 1, 3
of specification, 7, 25-29,
56-57
storage allocation, 77
implications, 41-44
implication (=), 10
i nplies, 43,51, 122,137
| MPORTS, 107
i nports, 72
i ncl udes, 18, 39-40, 51, 124,
127
VS. aSSUnes, 46, 125
inconsistency, 12, 131, 135, 145
detection, 4, 37, 134, 145,
147, 152
I ndexQp, 179
induction, 37, 55, 101, 132, 135,
138, 142-143
datatype, 83
hypothesis, 135
Infinite, 204
infix operator, 36, 37
information hiding, 5
inheritance, 115
initial algebra, 37
initialization, 70, 75, 76, 83
| nsert Gener at ed, 51, 177

www.manaraa.com



244 Index

instantiation, 134
I nt Cycl e, 203
I nt eger, 163
I nt eger AndNat ur al , 206
I nt eger AndPosi ti ve, 206
I nt eger Pr edi cat es, 164
intended consequences, 41-44
interface, 14, 57, 102-104
language, 14-18
specification, 20-22
Internet mailing lists, 227
i nt roduces, 18, 36
invariant, 100, 151
abstract, 29, 78, 80
representation, 26-29, 76,
99-101
type, 113, 115, 117
| nver se, 199
I nvol uti ve, 191
I rreflexive, 192
I sPO, 194
I sTO 194
iterator, 92

Joi nOp, 178

knitting, 7
Knuth-Bendix completion, 134

| arch-i nt erest, 225
Larch/Smalltalk Browser, 225
Lattice, 197
LCL, 1517, 22-26, 56-101
and LM3, 102
and LSL, 57-58
LCL Checker, 62, 72
availability of, 225
Acl file, 57
LCLint, 57, 72, 80, 83, 92
LeftDi stri buti ve, 200

Leftldentity, 198
Leftl nver se, 198
lemma, 128
lexical conventions, 33-34, 160,
222-223
Lexi cogr aphi cOr der, 196
Ihfile, 57, 62
Li near Cont ai ner, 123
Liskov, Barbara, iii
Li st, 173
Li st Structure, 182
Li st Struct ur eOps, 183
LM3, 22, 102-120
and LCL, 102
and LSL, 102-105
LM3 Checker, availability of,
225
loc, 21
local state, 105
logic, 8-13
logical consequence, 11, 12
logical system, 129
|oose semantics, 37
LP, 29-33, 121
availability of, 225
LSL, 18-20, 35-55
and LCL, 57-58
and LM 3, 102-105
debugging, 121-153
handbook, 157-210
semantic checks, 122-125
LSL Checker, 62, 125-133
availability of, 225
ld file, 57

. n8B file, 103
Machiavelli, 1
macros, 66, 72
max| ndex, 60, 68
Merber Op, 178

www.manaraa.com



members (of structs), 59

method specification, 109, 112,
113, 115, 116

. g file, 103

m nl ndex, 60

M nMax, 196

mixfix operator, 36, 41

MODI FI ES, 105, 109

nodi fi es, 22, 61, 67, 68

Modula-3 and C, 102

module, 57, 102, 103

Monoi d, 198

monotonicity, 46

Mul tiplication, 205

music, 7

mutable type, 59, 60, 72, 92

sharing, 75
mutable value, 105

Nat ur al , 201

Nat ur al Or der , 204

negation, 10

non-atomic routine, 116-117

non-determinism, 67, 77, 112

non-equational specification, 37—
39

normal result, 109

normalization, 133, 134

null-terminated, 68

number theory traits, 201-206

object

field in Modula-3, 109, 112

inC, 58-61

typein Modula-3, 109
observer set, 38, 54
OneToOne, 192
opague type, 110, 113, 119
operationa specifications, 5
operator

Index 245

inLSL, 18

interface language, 17, 21

LCL, 57-58, 63

LM3, 103, 104

logical, 89

LP, 129, 130
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